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Abstract

This paper studies model-inversion attacks, in which the

access to a model is abused to infer information about the

training data. Since its first introduction by [7], such attacks

have raised serious concerns given that training data usually

contain privacy-sensitive information. Thus far, successful

model-inversion attacks have only been demonstrated on sim-

ple models, such as linear regression and logistic regression.

Previous attempts to invert neural networks, even the ones

with simple architectures, have failed to produce convincing

results. We present a novel attack method, termed the gener-

ative model-inversion attack, which can invert deep neural

networks with high success rates. Rather than reconstruct-

ing private training data from scratch, we leverage partial

public information, which can be very generic, to learn

a distributional prior via generative adversarial networks

(GANs) and use it to guide the inversion process. Moreover,

we theoretically prove that a model’s predictive power and

its vulnerability to inversion attacks are indeed two sides of

the same coin—highly predictive models are able to estab-

lish a strong correlation between features and labels, which

coincides exactly with what an adversary exploits to mount

the attacks. Our extensive experiments demonstrate that the

proposed attack improves identification accuracy over the

existing work by about 75% for reconstructing face images

from a state-of-the-art face recognition classifier. We also

show that differential privacy, in its canonical form, is of

little avail to defend against our attacks.

∗Both authors contributed equally

1. Introduction

Deep neural networks (DNNs) have been adopted in

a wide range of applications, including computer vision,

speech recognition, healthcare, among others. The fact that

many compelling applications of DNNs involve process-

ing sensitive and proprietary datasets raised great concerns

about privacy. In particular, when machine learning (ML)

algorithms are applied to private training data, the resulting

models may unintentionally leak information about training

data through their output (i.e., black-box attack) or their

parameters (i.e., white-box attack).

A concrete example of privacy attacks is model-inversion

(MI) attacks, which aim to reconstruct sensitive features of

training data by taking advantage of their correlation with the

model output. Algorithmically, MI attacks are implemented

as an optimization problem seeking for the sensitive feature

value that achieves the maximum likelihood under the target

model. The first MI attack was proposed in the context of

genomic privacy [7], where the authors showed that adver-

sarial access to a linear regression model for personalized

medicine can be abused to infer private genomic attributes

about individuals in the training dataset. Recent work [6]

extended MI attacks to other settings, e.g., recovering an

image of a person from a face recognition model given just

their name, and other target models, e.g., logistic regression

and decision trees.

Thus far, effective MI attacks have only been demon-

strated on the aforementioned simple models. It remains an

open question whether it is possible to launch the attacks

against a DNN and reconstruct its private training data. The

challenges of inverting DNNs arise from the intractability

and ill-posedness of the underlying attack optimization prob-

lem. For neural networks, even the ones with one hidden
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layer, the corresponding attack optimization becomes a non-

convex problem; solving it via gradient descent methods may

easily stuck in local minima, which leads to poor attack per-

formance. Moreover, in the attack scenarios where the target

model is a DNN (e.g., attacking face recognition models),

the sensitive features (face images) to be recovered often

lie in a high-dimensional, continuous data space. Directly

optimizing over the high-dimensional space without any con-

straints may generate unrealistic features lacking semantic

information.

In this paper, we focus on image data and propose a

simple yet effective attack method, termed the generative

model-inversion (GMI) attack, which can invert DNNs and

synthesize private training data with high fidelity. The key

observation supporting our approach is that it is arguably

easy to obtain information about the general data distribu-

tion, especially for the image case. For example, against

a face recognition classifier, the adversary could randomly

crawl facial images from the Internet without knowing the

private training data. We find these datasets, although may

not contain the target individuals, still provide rich knowl-

edge about how a face image might be structured; extraction

and proper formulation of such prior knowledge will help

regularize the originally ill-posed inversion problem. We

also move beyond specific attack algorithms and explore the

fundamental reasons for a model’s susceptibility to inver-

sion attacks. We show that the vulnerability is unavoidable

for highly predictive models, since these models are able to

establish a strong correlation between features and labels,

which coincides exactly with what an adversary exploits to

mount MI attacks.

Our contributions can be summarized as follows: (1) We

propose to use generative models to learn an informative

prior from public datasets so as to regularize the ill-posed in-

version problem. (2) We propose an end-to-end GMI attack

algorithm based on GANs, which can reveal private training

data of DNNs with high fidelity. (3) We present a theoretical

result that uncovers the fundamental connection between a

model’s predictive power and its susceptibility to general MI

attacks and empirically validate it. (4) We conduct extensive

experiments to demonstrate the performance of the proposed

attack. (5) We show that differential privacy, a “gold stan-

dard” privacy notion nowadays, is of little avail to protect

against our attacks, because it does not explicitly aim to

protect the secrecy of attributes in training data. This raises

the question: What is the right notion for attribute privacy?

Answering this question is an important future work.

2. Related Work

Privacy attacks against ML models consist of methods

that aim to reveal some aspects of training data. Of particular

interest are membership attacks and MI attacks. Member-

ship attacks aim to determine whether a given individual’s

data is used in training the model [19]. MI attacks, on the

other hand, aim to reconstruct the features corresponding to

specific target labels.

In parallel to the emergence of various privacy attack

methods, there is a line work that formalizes the privacy no-

tion and develops defenses with formal and provable privacy

guarantees. One dominate definition of privacy is differential

privacy (DP), which carefully randomizes an algorithm so

that its output does not to depend too much on any individu-

als’ data [5]. In the context of ML algorithms, DP guaran-

tees protect against attempts to infer whether a data record

is included in the training set from the trained model [1].

By definition, DP limits the success rate of membership

attacks. However, it does not explicitly protect attribute

privacy, which is the target of MI attacks [7].

The first MI attack was demonstrated in [7], where the

authors presented an algorithm to recover genetic markers

given the linear regression that uses them as input features,

the response of the model, as well as other non-sensitive

features of the input. [11] proposed a algorithm that allows

MI attacks to be carried out without the knowledge of non-

sensitive features by poisoning training data properly. De-

spite the generality of the algorithmic frameworks proposed

in the above two papers, the evaluation of the attacks is only

limited to linear models. [6] discussed the application of

MI attacks to more complex models including some shallow

neural networks in the context of face recognition. Although

the attack can reconstruct face images with identification

rates much higher than random guessing, the recovered faces

are indeed blurry and hardly recognizable. Moreover, the

quality of reconstruction tends to degrade for more complex

architectures. [24] proposed to train a separate network that

swaps the input and output of the target network to perform

MI attacks. The inversion model can be trained with black-

box accesses to the target model. However, their approach

cannot directly be benefited from the white-box setting.

Moreover, several recent papers started to formalize MI

attacks and study the factors that affect a model’s vulnerabil-

ity from a theoretical viewpoint. For instance, [22] charac-

terized model invertibility for Boolean functions using the

concept of influence from Boolean analysis; [26] formalized

the risk that the model poses specifically to individuals in

the training data and shows that the risk increases with the

degree of overfitting of the model. However, their theory

assumed that the adversary has access to the join distribution

of private feature and label, which is overly strong for many

attack scenarios. Our theory does not rely on this assumption

and better supports the experimental findings.

The algorithms of MI attacks resemble an orthogonal line

of work on feature visualization [18, 27], which also attempts

to reconstruct an image that maximally activates a target

network. Our work differs from the existing work on feature

visualization in that the proposed algorithm adopts a novel

optimization objective which results in more realistic image
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Figure 1: Overview of the proposed GMI attack method.

recovery and can incorporate possible auxiliary knowledge

of the attacker.

3. Generative MI Attack

An overview of our GMI attack is illustrated in Figure 1.

In this section, we will first discuss the threat model and then

present our attack method in details.

3.1. Threat Model

In traditional MI attacks, an adversary, given a model

trained to predict specific labels, uses it to make predictions

of sensitive features used during training. Throughout the

paper, we will refer to the model subject to attacks as the

target network. We will focus on the white-box setting,

where the adversary is assumed to have access to the target

network f and employs some inference technique to discover

the features x associated with a specific label y. In addition

to f , the adversary may also have access to some auxiliary

knowledge that facilitates his/her inference. We will use

face recognition classifiers as a running example for the

target network. Face recognition classifiers label an image

containing a face with an identifier corresponding to the

individual depicted in the image. The corresponding attack

goal is to recover the face image for some specific identity

based on the target classifier parameters.

Possible Auxiliary Knowledge. Examples of auxiliary

knowledge could be a corrupted image which only contains

nonsenstive information, such as background pixels in a face

image, or a blurred image. This auxiliary knowledge might

be easy to obtain, as blurring and corruption are often applied

to protect anonymity of individuals in public datasets [3, 16].

Connection to Image Inpainting. The setup of MI at-

tacks on images resembles the widely studied image inpaint-

ing tasks in computer vision, which also try to fill missing

pixels of an image. The difference is, however, in the goal of

the two. MI attacks try to fill the sensitive features associated

with a specific identity in the training set. In contrast, im-

age inpainting tasks only aim to synthesize visually realistic

and semantically plausible pixels for the missing regions;

whether the synthesized pixels are consistent with a specific

identity is beyond the scope. Despite the difference, our ap-

proach to MI attacks leverages some training strategies from

the venerable line of work on image inpainting [25, 13, 23]

and significantly improves the realism of the reconstructed

images over the existing attack methods.

3.2. Inferring Missing Sensitive Features

To realistically reconstruct missing sensitive regions in

an image, our approach utilizes the generator G and the

discriminator D, all of which are trained with public data.

After training, we aim to find the latent vector ẑ that achieves

highest likelihood under the target network while being con-

strained to the data manifold learned by G. However, if not

properly designed, the generator may not allow the target

network to easily distinguish between different latent vectors.

For instance, in extreme cases, if the generated images of

all latent vectors collapse to the same point in the feature

space of the target network, then there is no hope to identify

which one is more likely to appear in its private training set

of the target network. To address this issue, we present a

simple yet effective loss term to promote the diversity of

the data manifold learned by G when projected to the target

network’s feature space.

Specifically, our reconstruction process consists of two

stages: (1) Public knowledge distillation, in which we train

the generator and the discriminators on public datasets in

order to encourage the generator to generate realistic-looking

images. The public datasets can be unlabeled and have no

identity overlapping with the private dataset. (2) Secret

revelation, in which we make use of the generator obtained

from the first stage and solve an optimization problem to

recover the missing sensitive regions in an image.

For the first stage, we leverage the canonical Wasserstein-

GAN [2] training loss:

min
G

max
D

Lwgan(G,D) = Ex[D(x)]− Ez[D(G(z))] (1)

When the auxiliary knowledge (e.g., blurred or corrupted ver-

sion of the private image) is available to the attacker, we let

the generator take the auxiliary knowledge as an additional

input. Moreover, when the extra knowledge is a corrupted

image, we adopt two discriminators for discerning whether

an image is real or artificial, like [13]. The global discrimina-

tor looks at the reconstructed image to assess if it is coherent

as a whole, while the local discriminator looks only at a

randomly selected patch containing the mask boundary to

ensure the local consistency of the generated patches at the

boundary area. However, different from [13] which fuses the

outputs of the two discriminators together by a concatenation

layer that predicts a value corresponding to the probability

of the image being real, we allow two discriminators to have

separate outputs, as we find it make the training loss con-

verge faster empirically. The detailed architecture of the

GAN is presented in the supplementary material.

In addition, inspired by [23], we introduce a diversity loss

term that promotes the diversity of the images synthesized

by G when projected to the target network’s feature space.
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Let F denote the feature extractor of the target network. The

diversity loss can thus be expressed as

max
G

Ldiv(G) = Ez1,z2

[

‖F (G(z1))− F (G(z2))‖

‖z1 − z2‖

]

(2)

As discussed above, larger diversity will facilitate the tar-

geted network to discern the generated image that is most

likely to appear in its private training set. Our full ob-

jective for public knowledge distillation can be written as

minG maxD Lwgan(G,D)− λdLdiv(G).
In the secret revelation stage, we solve the following

optimization to find the latent vector that generates an image

achieving the maximum likelihood under the target network

while remaining realistic: ẑ = argminz Lprior(z)+λiLid(z),
where the prior loss Lprior(z) penalizes unrealistic images

and the identity loss Lid(z) encourages the generated images

to have high likelihood under the targeted network. They are

defined, respectively, by

Lprior(z) = −D(G(z)) Lid(z) = − log[C(G(z))] (3)

where C(G(z)) represents the probability of G(z) output by

the target network.

4. Connection Between Model Predictive

Power and MI Attacks

For a fixed data point (x, y), we can measure the perfor-

mance of a model f for predicting the label y of feature x

using the log likelihood log pf (y|x). It is known that max-

imizing the log likelihood is equivalent to minimizing the

cross entropy loss—one of the most commonly used loss

functions for training DNNs. Thus, throughout the follow-

ing analysis, we will focus on the log likelihood as a model

performance measure.

Now, suppose that (X,Y ) is drawn from an unknown data

distribution p(X,Y ). Moreover, X = (Xs, Xns), where Xs

and Xns denote the sensitive and non-sensitive part of the

feature, respectively. We can define the predictive power of

the sensitive feature Xs under the model f (or equivalently,

the predictive power of model f using Xs) as the change

of model performance when excluding it from the input,

i.e., E(X,Y )∼p(X,Y )[log pf (Y |Xs, Xns) − log pf (Y |Xns)].
Similarly, we define the predictive power of the sensitive

feature given a specific class y and nonsensitive feature xns

as

Uf (xns, y) = EXs∼p(Xs|y,xns)[logpf (y|Xs, xns)

− log pf (y|xns)]
(4)

We now consider the measure for the MI attack perfor-

mance. Recall the goal of the adversary is to guess the

value of xs given its corresponding label y, the model f ,

and some auxiliary knowledge xns. The best attack out-

come is the recovery of the entire posterior distribution

of the sensitive feature, i.e., p(Xs|y, xns). However, due

to the incompleteness of the information available to the

adversary, the best possible attack result that adversary

can achieve under the attack model can be captured by

pf (Xs|y, xns) ∝ pf (y|Xs, xns)p(Xs|xns), assuming that

the adversary can have a fairly good estimate of p(Xs|xns).
Such estimate can be obtained by, for example, learning

from public datasets using the method in Section 3.2. Al-

though MI attack algorithms often output a single feature

vector as the attack result, these algorithms can be adapted

to output a feature distribution instead of a single point by

randomizing the starting guess of the feature. Thus, it is

natural to measure the MI attack performance in terms of the

similarity between p(Xs|y, xns) and pf (Xs|y, xns). The

next theorem indicates that the vulnerability to MI attacks

is unavoidable if the sensitive features are highly predictive

under the model. When stating the theorem, we use the

negative KL-divergence SKL(·||·) to measure the similarity

between two distributions.

Theorem 1. Let f1 and f2 be two models such

that for any fixed label y ∈ Y , Uf1(xns, y) ≥
Uf2(xns, y). Then, SKL(p(Xs|y, xns)||pf1(Xs|y, xns)) ≥
SKL(p(Xs|y, xns)||pf2(Xs|y, xns)).

We omit the proof of the theorem to the supplementary

material. Intuitively, highly predictive models are able to

build a strong correlation between features and labels, which

coincides exactly with what an adversary exploits to launch

MI attacks; hence, more predictive power inevitably leads to

higher attack performance.

In [26], it is argued that a model is more vulnerable to MI

attacks if it overfits data to a greater degree. Their result is

seemingly contradictory with ours, because fixing the train-

ing performance, more overfitting implies that the model

has less predictive power. However, the assumption underly-

ing their result is fundamentally different from ours, which

leads to the disparities. The result in [26] assumes that the

adversary has access to the joint distribution p(Xs, Xns, Y )
that the private training data is drawn from and their setup

of the goal of the MI attack is to learn the sensitive feature

associated with a given label in a specific training dataset.

By contrast, our formulation of MI attacks is to learn about

private feature distribution p(Xs|y, xns) for a given label

y from the model parameters. We do not assume that the

adversary has the prior knowledge of p(Xs, Xns, Y ), as it is

a overly strong assumption for our formulation—the adver-

sary can easily obtain p(Xs|y, xns) for any labels and any

values of non-sensitive features when having access to the

joint distribution.
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5. Experiments

5.1. Experimental Setup

Dataset. We evalaute our method using three datasets: (1)

the MNIST handwritten digit data [15] (MNIST), (2) the

Chest X-ray Database [21] (ChestX-ray8), and (3) the

CelebFaces Attributes Dataset [17] (CelebA) containing

202,599 face images of 10,177 identities with coarse align-

ment. We crop the images at the center and resize them to

64×64 so as to remove most background.

Protocol. We split each dataset into two disjoint parts: one

part used as the private dataset to train the target network and

the other as a public dataset for prior knowledge distillation.

The public data, throughout the experiments, do not have

class intersection with the private training data of the target

network. Therefore, the public dataset in our experiment

only helps the adversary to gain knowledge about features

generic to all classes and does not provide information about

private, class-specific features for training the target network.

This ensures the fairness of the comparison with the existing

MI attack [6].

Models. We implement several different target networks

with varied complexities. Some of the networks are adapted

from existing ones by adjusting the number of outputs

of their last fully connected layer to our tasks. For the

digit classification on MNIST, our target network consists

of 3 convolutional layers and 2 pooling layers. For the

disease prediction on ChestX-ray8, we use ResNet-

18 adapted from [10]. For the face recognition tasks

on CelebA, we use the following networks: (1) VGG16

adapted from [20]; (2) ResNet-152 adapted from [10];

(3) face.eoLVe adapted from the state-of-the-art face

recognition network [4].

Training. We split the private dataset defined above into

training set (90%) and test set (10%) and use the SGD op-

timizer with learning rate 10−2, batch size 64, momentum

0.9 and weight decay 10−4 to train these networks. To train

the GAN in the first stage of our attack pipeline, we set

λd = 0.5 and use the Adam optimizer with the learning rate

0.004, batch size 64, β1 = 0.5, and β2 = 0.999 [14]. In the

second stage, we set λi = 100 and use the SGD optimizer to

optimize the latent vector z with the learning rate 0.02, batch

size 64 and momentum 0.9. z is drawn from a zero-mean

unit-variance Gaussian distribution. We randomly initialize

z for 5 times and optimize each round for 1500 iterations.

We choose the solution with the lowest identity loss as our

final latent vector.

5.2. Evaluation Metrics

Evaluating the success of MI attacks requires to assess

whether the recovered image exposes the private information

about a target label. Previous works analyzed the attack per-

formance mainly qualitatively by visual inspection. Herein,

we introduce four metrics which allow for quantitatively as-

sessing the MI attack efficacy and performing evaluation at

a large scale.

Peak Signal-to-Noise Ratio (PSNR). PSNR is the ratio

of an image’s maximum squared pixel fluctuation over the

mean squared error between the target image and the recon-

structed image [12]. PSNR measures the pixel-wise similar-

ity between two images. The higher the PSNR, the better

the quality of the reconstructed image.

However, oftentimes, the reconstructed image may still

reveal identity information even though it is not close to the

target image pixel-wise. For instance, a recovered face with

different translation, scale and rotation from the target image

will still incur privacy loss. This necessitates the need for the

following metrics that can evaluate the similarity between

the reconstructed and the target image at a semantic level.

Attack Accuracy (Attack Acc). We build an evaluation

classifier that predicts the identity based on the input recon-

structed image. If the evaluation classifier achieves high

accuracy, the reconstructed image is considered to expose

private information about the target label. The evaluation

classifier should be different from the target network because

the reconstructed images may incorporate features that over-

fit the target network while being semantically meaningless.

Moreover, the evaluation classifier should be highly perfor-

mant. For the reasons above, we adopt the state-of-the-art

architecture in each task as the evaluation classifier. For

MNIST, our evaluation network consists of 5 convolutional

layers and 2 pooling layers. For ChestX-ray8, our evalu-

ation network is adapted from VGG-19 [20]. For CeleA,

we use the model in [4] as the evaluation classifier. We first

pretrain it on the MS-Celeb-1M [9] and then fine tune on

the identities in the training set of the target network. The

resulting evaluation classifier can achieve 96% accuracy on

these identities.

Feature Distance (Feat Dist). Feat Dist measures the l2
feature distance between the reconstructed image and the

centroid of the target class. The feature space is taken to be

the output of the penultimate layer of the evaluation network.

K-Nearest Neighbor Distance (KNN Dist). KNN Dist

looks at the shortest distance from the reconstructed image

to the target class. We identify the closest data point to the

reconstructed image in the training set and output their dis-

tance. The distance is measured by the l2 distance between

the two points in the feature space of the evaluation classifier.

5.3. Experimental Results

We compare our proposed GMI attack with the existing

model-inversion attack (EMI), which implements the algo-

rithm in [6]. In this algorithm, the adversary only exploits the

identity loss for image reconstruction and returns the pixel

values that minimize the the identity loss. Another baseline

is pure image inpainting (PII). PII minimizes the W-GAN
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loss and performs image recovery based purely on the infor-

mation completely from the public dataset. The comparison

with PII will indicate whether our attack truly reveals private

information or merely learns to output a realistic-looking

image. The network architectures for PII are exhibited in the

the supplementary material.

5.3.1 Attacking Face Recognition Classifiers

For CelebA, the private set comprises 30,000 images of

1000 identities and samples from the rest are used as a public

dataset. We evaluate the attack performance in the three set-

tings: (1) the attacker does not have any auxiliary knowledge

about the private image, in which case he/she will recover the

image from scratch; (2) the attacker has access to a blurred

version of the private image and his/her goal is to deblur the

image; (3) the attacker has access to a corrupted version of

the private image wherein the sensitive, identity-revealing

features (e.g., nose, mouth, etc) are blocked.

Table 1 compares the performance of our proposed GMI

attack against EMI and PII for different network architec-

tures. We can see that EMI can hardly attack deep nets and

achieves around zero attack accuracy. Since EMI does not

exploit any prior information, the inversion optimization

problem is extremely ill-posed and performing gradient de-

scent ends up at some visually meaningless local minimum,

as illustrated by Figure 2. Interestingly, despite having the

meaningless patterns, these images can all be classified cor-

rectly into the target label by the target network. Hence,

the existing MI attack tends to generate “adversarial ex-

amples” [8] that can fool the target network but does not

exhibit any recognizable features of the private data. GMI

is much more effective than EMI. Particularly, our method

improves the accuracy of the attack against the state-of-the-

art face.evoLVe classifier over EMI by 75% in terms

of Top-5 attack accuracy. Also, note that models that are

more sophisticated and have more predictive power are more

susceptible to attacks. We will examine this phenomenon in

more details in Section 5.3.3.

Figure 2 also compares GMI with PII, which synthesizes

a face image completely based on the information from the

public dataset. We can see that although PII leads to realistic

recoveries, the reconstructed images do not present the same

identity features as the target images. This can be further

corroborated by the quantitative results in Table 1.

We now discuss the case where the attacker has access to

some auxilliary knowledge in terms of blurred or partially

blocked images. For the latter, we consider two types of

masks—center and face “T”, illustrated by the second col-

umn of Figure 2 (c) and (d), respectively. The center mask

blocks the central part of the face and hides most of the

identity-revealing features, such as eyes and nose, while the

face T mask is designed to obstruct all private features in a

face image. EMI takes into account the auxiliary knowledge

Table 1: Comparison of GMI with EMI and PII, when the

attacker does not have any auxiliary knowledge.

Model Attack KNN Dist Feat Dist Attack Acc Top-5 Attack Acc

VGG16

EMI 2397.50 2255.54 0 0

PII 2368.77 2425.09 0 0

GMI 2098.92 2012.10 28 53

ResNet-152

EMI 2422.99 2288.13 0 1

PII 2368.77 2425.09 0 0

GMI 1969.09 1886.44 44 72

face.evolve

EMI 2371.52 2248.81 0 1

PII 2368.77 2425.09 0 0

GMI 1923.72 1802.62 46 76

by using it as a starting point to optimize identity loss. GMI

and PII add another branch in the generator to take the auxil-

iary knowledge as an extra input; the detailed architectures

can be found in the supplementary material. Table 2 shows

that our method consistently outperforms EMI and PII. In

particular, the comparison between GMI and PII indicates

that the improved attack performance of GMI over EMI is

not merely due to the realistic recovery—it truly reveals pri-

vate information from the target networks. Moreover, the

attacks are more effective for the center mask than the face

T mask. This is because the face T mask we designed com-

pletely hides the identity revealing features on the face while

the center mask may still expose the mouth information.

Moreover, we examine the performance of the proposed

attack for recovering some implicit attributes of the private

images, such as gender, age, hair style, among others. For

some attributes in CelebA, the number of individuals with

the attribute is significantly different from that without the

attribute. It will be very easy to achieve a high accuracy for

recovering these attributes as the attacker can just always

output the majority. Therefore, we only focus on some

private-sensitive attributes for which CelebA is roughly

balanced. Table 3 shows that GMI also outperforms EMI in

terms of recovering the attributes in various attack settings.

5.3.2 Impact of Public Knowledge

We have seen that distilling prior knowledge and properly

incorporating it into the attack algorithm are important to

the success of MI attacks. In our proposed method, the prior

knowledge is gleaned from public datasets through GAN.

We now evaluate the impact of public datasets on the attack

performance.

We first consider the case where the public data is from

the same distribution as the private data and study how the

size of the public data affects the attack performance. We

change the size ratio (1:1, 1:4, 1:6, 1:10) of the public over

the private data by varying the number of identities in the

public dataset (1000, 250, 160, 100). As shown in Table 4,

the attack performance varies by less than 7% when shrink-

ing the public data size by 10 times.

Moreover, we study the effect of the distribution shift

between the public and private data on the attack perfor-
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Target Masked EMI PII GMI

(c) Center Mask (d) Face T Mask
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Figure 2: Qualitative comparison of the proposed GMI attack with the existing MI attack (EMI). When the attacker has access

to blurred or corrupted private images as auxiliary knowledge, we additionally compare with the pure image inpainting method

(PII). The ground truth target image is shown in 1st col.

Table 2: Comparison of GMI with EMI and PII, when the attacker can access blurred and corrupted private images.

Model Metric
Blurring Center Mask Face T mask

EMI PII GMI EMI PII GMI EMI PII GMI

VGG16

PSNR 19.66 20.78 21.97 18.69 25.49 27.58 19.77 24.05 26.79

Feat Dist 2073.56 2042.99 1904.56 1651.72 1866.07 1379.26 1798.85 1838.31 1655.35

KNN Dist 2164.40 2109.82 1946.97 1871.21 1772.74 1414.37 1980.68 1916.67 1742.74

Attack Acc 0% 6% 43% 14% 34% 78% 11% 20% 58%

ResNet-152

PSNR 19.63 20.78 22.00 18.69 25.49 27.34 19.89 24.05 26.64

Feat Dist 2006.46 2042.99 1899.79 1635.03 1866.07 1375.36 1641.31 1838.31 1594.81

KNN Dist 2101.13 2109.82 1922.14 1859.78 1772.74 1403.24 1847.74 1916.67 1670.05

Attack Acc 1% 6% 50% 9% 34% 80% 11% 20% 63%

face.evoLVe

PSNR 19.64 20.78 22.04 18.97 25.49 27.69 19.86 24.05 25.77

Feat Dist 1997.93 2042.99 1878.38 1609.35 1866.07 1364.42 1762.57 1838.31 1624.95

KNN Dist 2085.53 2109.82 1904.47 1824.10 1772.74 1403.19 1962.07 1916.67 1682.56

Attack Acc 1% 6% 51% 12% 34% 82% 11% 20% 64%

Table 3: Comparison of GMI with EMI and PII for recov-

ering implicit attributes of the private images. The attack

performance is measured by the accuracy (%) of a classifier

trained to detect a specific attribute in a face image.

Setting Attack
Blond

Hair

Bushy

Eyebrows
Glasses Male Mustache Young

W/out

Aux.

Knowledge

EMI 55 65 63 47 74 51

PII 64 65 78 51 70 61

GMI 78 76 90 74 88 70

Center

Mask

EMI 70 44 67 78 75 84

PII 76 56 79 75 77 84

GMI 94 79 94 95 92 97

Face T

Mask

EMI 74 44 55 73 69 77

PII 80 47 82 70 71 73

GMI 89 71 95 86 90 94

Blurring

EMI 77 67 56 67 75 57

PII 76 70 77 71 76 65

GMI 86 84 92 90 85 82

Table 4: Evaluation for the impact of public datasets on the

attack accuracy.

Model
CelebA→CelebA PubFig83→CelebA

EMI
1:1 1:4 1:6 1:10 W/o Preproc. W/ Preproc.

VGG 78% 77% 75% 72% 48% 67% 14%

LeNet 81% 75% 77% 75% 52% 66% 9%

face.evoLVe 77% 77% 77% 70% 56% 70% 12%

mance. We train the GAN on the PubFig83 dataset, which

contains 13,600 images with 83 identities, and attack the

target network trained on CelebA. There are more faces

with sunglasses in PubFig83 than CelebA, which makes

it harder to distill generic face information. Without any

pre-processing, the attack accuracy drops by more than 20%

despite still outperforming the existing MI attack by a large

margin. To further improve the reconstruction quality, we

detect landmarks in the face images using the off-the-shelf

detector1, rotate the images such that the eyes lie on a hor-

izontal line, and crop the faces to remove the background.

These pre-processing steps make the public datasets bet-

ter present the face information, thus improving the attack

accuracy significantly.

5.3.3 Attacking Models with Varied Predictive Powers

We perform experiments to validate the connection between

predictive power and the vulnerability to MI attacks. We

measure the predictive power of sensitive feature under a

model using the difference of model testing accuracy based

on all features and just non-sensitive features. We consider

the following different ways to construct models with in-

creasing feature predictive powers, namely, enlarging the

training size per class, adding dropout regularization, and

performing batch normalization. For the sake of efficiency,

we slightly modify the proposed method in Section 3.2 in

order to avert re-training GANs for different architectures.

Specifically, we exclude the diversity loss from the attack

pipeline so that multiple architectures can share the same

GAN for prior knowledge distillation. Figure 3 shows that,

in general, the attack performance will be better for models

1http://dlib.net/files/shape_predictor_68_face_

landmarks.dat.bz2
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(a) (b) (d)(c)

Figure 3: (a)-(c): The performance of the GMI attack against models with different predictive powers by varying training

size, dropout, and batch normalization, respectively. (d) Attack accuracy of the GMI attack against models with different DP

budgets. Attack accuracy of PII is plotted as a baseline.

with higher feature predictive powers. Moreover, this trend

is consistent across different architectures.

5.3.4 Attacking Differentially Private Models

We investigate the implications of DP for MI attacks. (ǫ, δ)-
DP is ensured by adding Gaussian noise to clipped gradients

in each training iteration [1]. We find it challenging to pro-

duce useful face recognition models with DP guarantees due

to the complexity of the task. Therefore, we turn to a sim-

pler dataset, MNIST, which is commonly used in differential

private ML studies. We set δ = 10−5 and vary the noise

scale to obtain target networks with different ǫ. The detailed

settings of differentially private training are presented in the

supplementary material. The attack performance against

these target networks and their utility are illustrated in Fig-

ure 3 (d). Since the attack accuracy of the GMI attack on

differentially private models is higher than that of PII which

fills missing regions completely based on the public data,

it is clear that the GMI attack can expose private informa-

tion from differentially private models, even with stringent

privacy guarantees, like ǫ = 0.1. Moreover, varying differ-

ential privacy budgets helps little to protect against the GMI

attack; sometimes, more privacy budgets even improve the

attack performance (e.g., changing ǫ from 1 to 0.1). This is

because DP, in its canonical form, only hides the presence

of a single instance in the training set; it does not explicitly

aim to protect attribute privacy. Limiting the learning of

individual training instances may facilitate the learning of

generic features of a class, which, in turn, helps to stage MI

attacks.

5.3.5 Results on Other Datasets

For MNIST, we use all 34265 images with labels 5, 6, 7, 8, 9
as private set, and the rest of 35725 images with labels

0, 1, 2, 3, 4 as a public dataset. Note that the labels in the

private and public data have no overlaps. We augment the

public data by training an autoencoder and interpolating in

the latent space. Our GMI attack is compared with EMI in

Table 5. We omit the PII baseline because the public and

private set defined in this experiment are rather disparate

and PII essentially produces results close to random guesses.

We can see from the table that the performance of GMI is

significantly better than the EMI.

Moreover, we attack a disease predictor trained on

ChestX-ray8. We use 10000 images of seven classes

as the private data and the other 10000 of different labels

as public data. The GMI and EMI attack are compared in

Table 5. Again, the GMI attack outperforms the EMI attack

by a large margin.

Table 5: Comparing the GMI against the EMI attack on

MNIST and ChestX-ray8.

Dataset Attack KNN Dist Feat Dist Attack Acc

MNIST
EMI 31.60 82.69 40%

GMI 4.04 16.17 80%

ChestX-ray8
EMI 130.19 155.65 14%

GMI 63.42 93.68 71%

6. Conclusion

In this paper, we present a generative approach to MI

attacks, which can achieve the-state-of-the-art success rates

for attacking the DNNs with high-dimensional input data.

The idea of our approach is to extract generic knowledge

from public datasets via GAN and use it to regularize the

inversion problem. Our experimental results show that our

proposed attack is highly performant even when the public

datasets (1) do not include the identities that the adversary

aims to recover, (2) are unlabeled, (3) have small sizes, and

(4) come from a different distribution from the private data.

We also provide theoretical analysis showing the fundamen-

tal connection between a model’s predictive power and its

vulnerability to inversion attacks. For future work, we are

interested in extending the attack to the black-box setting

and studying effective defenses against MI attacks.
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