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Abstract

In this paper, we propose the first framework (UC-

Net) to employ uncertainty for RGB-D saliency detection

by learning from the data labeling process. Existing RGB-

D saliency detection methods treat the saliency detection

task as a point estimation problem, and produce a single

saliency map following a deterministic learning pipeline.

Inspired by the saliency data labeling process, we propose

probabilistic RGB-D saliency detection network via condi-

tional variational autoencoders to model human annota-

tion uncertainty and generate multiple saliency maps for

each input image by sampling in the latent space. With the

proposed saliency consensus process, we are able to gener-

ate an accurate saliency map based on these multiple pre-

dictions. Quantitative and qualitative evaluations on six

challenging benchmark datasets against 18 competing al-

gorithms demonstrate the effectiveness of our approach in

learning the distribution of saliency maps, leading to a new

state-of-the-art in RGB-D saliency detection1.

1. Introduction

Object-level visual saliency detection involves separat-

ing the most conspicuous objects that attract humans from

the background [27, 2, 55, 63, 38, 29, 62]. Recently, vi-

sual saliency detection from RGB-D images have attracted

lots of interest due to the importance of depth information

in human vision system and the popularity of depth sensing

technologies [61, 64]. Given a pair of RGB-D images, the

task of RGB-D saliency detection aims to predict a saliency

map by exploring the complementary information between

color image and depth data.

The de-facto standard for RGB-D saliency detection is

to train a deep neural network using ground truth (GT)

∗Corresponding author: Deng-Ping Fan (dengpfan@gmail.com)
1Our code is publicly available at: https://github.com/

JingZhang617/UCNet.
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Figure 1. Provided GT compared with UC-Net (ours) predicted

saliency maps. For images with a single salient object (1 st row),

we can produce consistent prediction. When multiple salient ob-

jects exist (2nd row), we can produce diverse predictions.

saliency maps provided by the corresponding benchmark

datasets, where the GT saliency maps are obtained through

human consensus or by the dataset creators [18]. Building

upon large scale RGB-D datasets, deep convolutional neural

network based models [21, 61, 6, 24] have made profound

progress in learning the mapping from an RGB-D image

pair to the corresponding GT saliency map. Considering the

progress for RGB-D saliency detection under this pipeline,

in this paper, we would like to argue that this pipeline fails

to capture the uncertainty in labeling the GT saliency maps.

According to research in human visual perception [33],

visual saliency detection is subjective to some extent. Each

person could have specific preferences in labeling the

saliency map (which has been previous discussed in user-

specific saliency detection [26]). Existing approaches to

RGB-D saliency detection treat saliency detection as a point

estimation problem, and produce a single saliency map for

each input image pair following a deterministic learning

pipeline, which fails to capture the stochastic characteris-

tic of saliency, and may lead to a partisan saliency model as

shown in second row of Fig. 1. Instead of obtaining only

a single saliency prediction (point estimation), we are in-

terested in how the network produces multiple predictions

(distribution estimation), which are then processed further

to generate a single prediction in a similar way to how the

GT saliency maps are created.

In this paper, inspired by human perceptual uncertainty,
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we propose a conditional variational autoencoders [50]

(CVAE) based RGB-D saliency detection model UC-Net to

produce multiple saliency predictions by modeling the dis-

tribution of output space as a generative model conditioned

on the input RGB-D images to account for the human un-

certainty in annotation.

However, there still exists one obstacle before we could

apply the probabilistic framework, that is existing RGB-

D benchmark datasets generally only provide a single GT

saliency map for each RGB-D image pair. To produce di-

verse and accurate predictions2, we resort to the “hide and

seek” [49] principle following the orientation shifting the-

ory [26] by iteratively hiding the salient foreground from

the RGB image for testing, which forces the deep network

to learn the saliency map with diversity. Through this it-

erative hiding strategy, we obtain multiple saliency maps

for each input RGB-D image pair, which reflects the diver-

sity/uncertainty from human labeling.

Moreover, depth data in the RGB-D saliency dataset can

be noisy, and a direct fusion of RGB and depth informa-

tion may overwhelm the network to fit noise. To deal with

the noisy depth problem, a depth correction network is pro-

posed as an auxiliary component to produce depth images

with rich semantic and geometric information. We also in-

troduce a saliency consensus module to mimic the majority

voting mechanism for saliency GT generation.

Our main contributions are summarized as: 1) We pro-

pose a conditional probabilistic RGB-D saliency prediction

model that can produce diverse saliency predictions instead

of a single saliency map; 2) We provide a mechanism via

saliency consensus to better model how saliency detection

works; 3) We present a depth correction network to decrease

noise that is inherent in depth data; 4) Extensive experi-

mental results on six RGB-D saliency detection benchmark

datasets demonstrate the effectiveness of our UC-Net.

2. Related Work

2.1. RGB­D Saliency Detection

Depend on how the complementary information between

RGB images and depth images is fused, existing RGB-D

saliency detection models can be roughly classified into

three categories: early-fusion models [43], late-fusion mod-

els [54, 24] and cross-level fusion models [61, 5, 7, 6, 64].

Qu et al. [43] proposed an early-fusion model to generate

feature for each superpixel of the RGB-D pair, which was

then fed to a CNN to produce saliency of each superpixel.

Recently, Wang et al. [54] introduced a late-fusion network

(i.e. AFNet) to fuse predictions from the RGB and depth

branch adaptively. In a similar pipeline, Han et al. [24]

2Diversity of prediction is related to the content of image. Image with

clear content may lead to consistent prediction (1st row in Fig. 1), while

complex image may produce diverse predictions (2nd row of Fig. 1).

fused the RGB and depth information through fully con-

nected layers. Chen et al. [7] used a multi-scale multi-path

network for different modality information fusion. Chen et

al. [5] proposed a complementary-aware RGB-D saliency

detection model by fusing features from the same stage of

each modality with a complementary-aware fusion block.

Chen et al. [6] presented attention-aware cross-level com-

bination blocks for multi-modality fusion. Zhao et al. [64]

integrated a contrast prior to enhance depth cues, and em-

ployed a fluid pyramid integration framework to achieve

multi-scale cross-modal feature fusion. To effectively incor-

porate geometric and semantic information within a recur-

rent learning framework, Li et al. [61] introduced a depth-

induced multi-scale RGB-D saliency detection network.

2.2. VAE or CVAE based Deep Probabilistic Models

Ever since the seminal work by Kingma et al. [31] and

Rezende et al. [45], variational autoencoder (VAE) and its

conditional counterpart CVAE [50] have been widely ap-

plied in various computer vision problems. To train a VAE,

a reconstruction loss and a regularizer are needed to penal-

ize the disagreement of the prior and posterior distribution

of the latent representation. Instead of defining the prior dis-

tribution of the latent representation as a standard Gaussian

distribution, CVAE utilizes the input observation to modu-

late the prior on Gaussian latent variables to generate the

output. In low-level vision, VAE and CVAE have been ap-

plied to the tasks such as image background modeling [34],

latent representations with sharp samples [25], difference of

motion modes [57], medical image segmentation model [3],

and modeling inherent ambiguities of an image [32]. Mean-

while, VAE and CVAE have been explored in more complex

vision tasks such as uncertain future forecast [1, 53], hu-

man motion prediction [47], and shape-guided image gen-

eration [12]. Recently, VAE algorithms have been extened

to 3D domain targeting applications such as 3D meshes de-

formation [52], and point cloud instance segmentation [59].

To the best of our knowledge, CVAE has not been

exploited in saliency detection. Although Li et al. [34]

adopted VAE in their saliency prediction framework, they

used VAE to model the image background, and separated

salient objects from the background through the reconstruc-

tion residuals. In contrast, we use CVAE to model labeling

variants, indicating human uncertainty of labeling. We are

the first to employ CVAE in saliency prediction network by

considering the human uncertainty in annotation.

3. Our Model

In this section, we present our probabilistic RGB-D

saliency detection model based on a conditional variational

autoencoder, which learns the distribution of saliency maps

rather than a single prediction. Let ξ = {Xi, Yi}Ni=1 be the

training dataset, where Xi = {Ii, Di} denotes the RGB-D
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Figure 2. Network training pipeline. Four main modules are included, namely a LatentNet (PriorNet (µprior, σprior) and PosteriorNet

(µpost, σpost)), a SaliencyNet, a DepthCorrectionNet and a PredictionNet. The LatentNet maps the RGB-D image pair X (or together

with GT Y for the PosteriorNet) to low dimensional Gaussian latent variable z. The DepthCorrectionNet refines the raw depth with a

semantic guided loss. The SaliencyNet takes the RGB image and the refined depth as input to generate a saliency feature map. The

PredictionNet takes both stochastic features and deterministic features to produce a final saliency map. We perform saliency consensus in

the testing stage, as shown in Fig. 3 to generate the final saliency map according to the mechanism of GT saliency map generation.
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Figure 3. Overview of the proposed framework during testing. We

sample the PriorNet multiple times to generate diverse and accu-

rate predictions. The saliency consensus module is then used to

obtain the majority voting of the final predictions.

input (consisting of the RGB image Ii and the depth image

Di), Yi denotes the ground truth saliency map. The whole

pipeline of our model during training and testing are illus-

trated in Fig. 2 and Fig. 3, respectively.

Our network is composed of five main modules: 1) La-

tentNet (PriorNet and PosteriorNet) that maps the RGB-D

input Xi (for PriorNet) or Xi and Yi (for PosteriorNet) to

the low dimensional latent variables zi ∈ R
K (K is dimen-

sion of the latent space); 2) DepthCorrectionNet that takes

Ii and Di as input to generate a refined depth image D′
i;

3) SaliencyNet that maps the RGB image Ii and the refined

depth image D′
i to saliency feature maps Sd

i ; 4) Prediction-

Net that employs stochastic features Ss
i from LatentNet and

deterministic features Sd
i from SaliencyNet to produce our

saliency map prediction Pi; 5) A saliency consensus module

in the testing stage that mimics the mechanism of saliency

GT generation to evaluate the performance with the pro-

vided single GT saliency map Yi. We will introduce each

module as follows.

3.1. Probabilistic RGB­D Saliency Model via CVAE

The Conditional Variational Autoencoder (CVAE) mod-

ulates the prior as a Gaussian distribution with parameters

conditioned on the input data X . There are three types of

variables in the conditional generative model: condition-

ing variable X (RGB-D image pair in our setting), latent

variable z, and output variable Y . For the latent variable z
drawn from the Gaussian distribution Pθ(z|X), the output

variable Y is generated from Pω(Y |X, z), then the poste-

rior of z is formulated as Qφ(z|X,Y ). The loss of CVAE is

defined as:

LCVAE = Ez∼Qφ(z|X,Y )[− logPω(Y |X, z)]

+DKL(Qφ(z|X,Y )||Pθ(z|X)),
(1)

where Pω(Y |X, z) is the likelihood of P (Y ) given la-

tent variable z and conditioning variable X , the Kullback-

Leibler Divergence DKL(Qφ(z|X,Y )||Pθ(z|X)) works as

a regularization loss to reduce the gap between the prior

Pθ(z|X) and the auxiliary posterior Qφ(z|X,Y ). In this

way, CVAE aims to model the log likelihood P (Y ) un-

der encoding error DKL(Qφ(z|X,Y )||Pθ(z|X)). Follow-

ing the standard practice in conventional CVAE [50], we

design a CVAE-based RGB-D saliency detection network,

and describe each component of our model in the following.

LatentNet: We define Pθ(z|X) as PriorNet that maps the

input RGB-D image pair X to a low-dimensional latent fea-

ture space, where θ is the parameter set of PriorNet. With

the same network structure and provided GT saliency map

Y , we define Qφ(z|X,Y ) as PosteriorNet, with φ being

the posterior net parameter set. In the LatentNet (Prior-

Net and PosteriorNet), we use five convolutional layers to

map the input RGB-D image X (or concatenation of X
and Y for the PosteriorNet) to the latent Gaussian variable

z ∼ N (µ, diag(σ2)), where µ, σ ∈ R
K , representing the
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Figure 4. Detailed structure of LatentNet, where K is dimension

of the latent space, “c1 4K” represents a 1× 1 convolutional layer

of output channel size 4K, “GAP” is global average pooling.

mean and standard deviation of the latent Gaussian variable,

as shown in Fig. 4.

Let us define parameter set of PriorNet and PosteriorNet

as (µprior, σprior) and (µpost, σpost) respectively. The KL-

Divergence in Eq. (1) is used to measure the distribution

mismatch between the prior net Pθ(z|X) and posterior net

Qφ(z|X,Y ), or how much information is lost when using

Qφ(z|X,Y ) to represent Pθ(z|X). Typical using of CVAE

involves multiple versions of ground truth Y [32] to pro-

duce informative z ∈ R
K , with each position in z represents

possible labeling variants or factors that may cause diverse

saliency annotations. As we have only one version of GT,

directly training with the provided single GT may fail to

produce diverse predictions as the network will simply fit

the provided annotation Y .

Generate Multiple Predictions: To produce diverse and ac-

curate predictions, we propose an iterative hiding technique

inspired by [49] following the orientation shifting theory

[26] to generate more annotations as shown in Fig. 5. We

iteratively hide the salient region in the RGB image with

mean of the training dataset. The RGB image and its cor-

responding GT are set as the starting point of the “new la-

bel generation” technique. We first hide the ground truth

salient object in the RGB image, and feed the modified im-

age to an existing RGB saliency detection model [42] to

produce a saliency map and treat it as one candidate anno-

tation. We repeat salient object hiding technique three times

for each training image3 to obtain four different sets of an-

notations in total (including the provided GT), and we term

this dataset as “AugedGT”, which is our training dataset.

During training, different annotations (as shown in Fig.

5) in Qφ(z|X,Y ) can force the PriorNet Pθ(z|X) to en-

code labeling variants of a given input X . As we have al-

ready obtained diverse annotations with the proposed hiding

technique, we are expecting the network to produce diverse

predictions for images with complicated context. During

testing, we can obtain one stochastic feature Ss (input of

the “PredictionNet”) of channel size K each time we sam-

ple as shown in Fig. 3.

SaliencyNet: We design SaliencyNet to produce a deter-

ministic saliency feature map Sd from the input RGB-D

data, where the refined depth data comes from the Depth-

CorrectionNet. We use VGG16 [48] as our encoder, and

remove layers after the fifth pooling layer. To enlarge the re-

ceptive field, we follow DenseASPP [58] to obtain feature

3We found that usually after three times of hiding, there exists no salient

objects in the hidden image.

Figure 5. New label generation. The 1st row: we iteratively hide

the predicted salient region, where no region is hidden in the first

image. The 2nd row: the corresponding GT of the hidden image.

S1 S2 S3 S4 S5

daspp daspp daspp daspp daspp

C

c1_M

Figure 6. SaliencyNet, where “S1” represents the first stage of the

VGG16 network, “daspp” is the DenseASPP module [58].

map with the receptive field of the whole image on each

stage of the VGG16 network. We then concatenate those

feature maps and feed it to another convolutional layer to

obtain Sd. The detail of the SaliencyNet is illustrated in

Fig. 6, where “c1 M” represents convolutional layer of ker-

nel size 1× 1, and M is channel size of Sd.

Feature Expanding: Statistics (z ∼ N (µ, diag(σ2)) in

particular) from the LatentNet (PriorNet during testing as

shown in Fig. 3 “Sampling”, or PosteriorNet during training

in Fig. 2) form the input to the Feature Expanding module.

Given a pair of (µk, σk) in each position of the K dimen-

sional vector, we obtain latent vector zk = σk ⊙ ǫ + µk,

where ǫ ∈ N (0, I). To fuse with deterministic feature Sd,

we expand zk to feature map of the same spatial size as Sd

by defining ǫ as two-dimensional Gaussian noise map. With

k = 1, ...,K, we can obtain a K (size of the latent space)

channel stochastic feature Ss representing labeling variants.

PredictionNet: The LatentNet produces stochastic features

Ss representing labeling variants, while the SaliencyNet

outputs deterministic saliency features Sd of input X . We

propose the PredictionNet, as shown in Fig. 2 to fuse fea-

tures from mentioned branches. A naive concatenation of

Ss and Sd may lead the network to learn only from the de-

terministic features, thus fail to model labeling variants. In-

spired by [47], we mix Ss and Sd channel-wise; thus, the

network cannot distinguish between features of the deter-

ministic branch and the probabilistic branch. We concate-

nate Sd and Ss to form a K +M channel feature map Ssd.

We define K + M dimensional variable r (a learnable pa-

rameter) representing possible ranking of 1, 2, ...,K + M ,

and then Ssd is mixed channel-wisely according to r to ob-

tain the mixed feature Smsd. Three 1×1 convolutional lay-

ers with output channel sizes of K,K/2, 1, are included in
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the PredictionNet to map Smsd to a single channel saliency

map P . During testing, with multiple stochastic features Ss,

we can obtain multiple predictions by sampling Ss from the

LatentNet N (µprior, diag(σ
2
prior)) multiple times.

3.2. DepthCorrectionNet

Two main approaches are employed to acquire depth

data for RGB-D saliency detection: through depth sensors

such as Microsoft Kinect, e.g., DES [8], and NLPR [41]

datasets; or computing depth from stereo cameras, exam-

ples of such datasets are SSB [40] and NJU2K [28]. Re-

gardless of the capturing technique, noise is inherent in the

depth data. We propose a semantic guided depth correc-

tion network to produce refined depth information as shown

in Fig. 2, termed as “DepthCorrectionNet”. The encoder

part of the DepthCorrectionNet is the same as the “Salien-

cyNet”, while the decoder part is composed of four sequen-

tial convolutional layers and bilinear upsampling operation.

We assume that edges of the depth map should be aligned

with edges of the RGB image. We adopt the boundary IOU

loss [39] as a regularizer for DepthCorrectionNet to achieve

a refined depth, which is guided by intensity of the RGB

image. The full loss for DepthCorrectionNet is defined as:

LDepth = Lsl + LIoub, (2)

where Lsl is the smooth ℓ1 loss between the refined depth

D′ and the raw depth D, Lioub is the boundary IOU loss

between the refined depth D′ and intensity Ig of the RGB

image I . Given the predicted depth map D′ and intensity

of RGB image Ig, we follow [39] to compute the first-order

derivatives of D′ and Ig. Subsequently, we calculate the

magnitude gD′ and gI of the gradients of D′ and Ig, and

define the boundary IOU loss as:

LIoub = 1− 2
|gD′ ∩ gI|
|gD′|+ |gI| . (3)

3.3. Saliency Consensus Module

Saliency detection is subjective to some extent, and it is

common to have multiple annotators to label one image, and

the final ground truth saliency map is obtained through ma-

jority voting strategy [18]. Although it is well known in the

saliency detection community about how the ground truth

is acquired; yet, there exists no research on embedding this

mechanism into deep saliency frameworks. Current mod-

els define saliency detection as a point estimation problem

instead of a distribution estimation problem. We, instead,

use CVAE to obtain the saliency distribution. Next, we em-

bed saliency consensus into our probabilistic framework to

compute the majority voting of different predictions in the

testing stage as shown in Fig. 3.

During testing, we sample PriorNet with fixed µprior and

σprior to obtain a stochastic feature Ss. With each Ss and

deterministic feature Sd from SaliencyNet, we obtain one

version of saliency prediction P . To obtain C different pre-

dictions P 1, ..., PC , we sample PriorNet C times. We si-

multaneously feed these multiple predictions to the saliency

consensus module to obtain the consensus of predictions.

Given multiple predictions {P c}Cc=1, where P c ∈ [0, 1],
we first compute the binary4 version P c

b of the predictions

by performing adaptive threshold [4] on P c. For each pixel

(u, v), we obtain a C dimensional feature vector Pu,v ∈
{0, 1}. We define Pmjv

b ∈ {0, 1} as a one-channel saliency

map representing majority voting of Pu,v . We define an in-

dicator 1c(u, v) = 1(P c
b (u, v) = Pmjv

b (u, v)) representing

whether the binary prediction is consistent with the majority

voting of the predictions. If P c
b (u, v) = Pmjv

b (u, v), then

1
c(u, v) = 1. Otherwise, 1c(u, v) = 0. We obtain one gray

saliency map after saliency consensus as:

Pmjv
g (u, v) =

∑C
c=1 1

c(u, v)

C

C∑

c=1

(P c
b (u, v)} × 1

c(u, v)).

(4)

3.4. Objective Function

At this stage, our loss function is composed of two parts

i.e. LCVAE and LDepth. Furthermore, we propose to use

the smoothness loss [9] as a regularizer to achieve edge-

aware saliency detection, based on the assumption of inter-

class distinction and intra-class similarity. Following [56],

we define first-order derivatives of the saliency map in the

smoothness term as

LSmooth =
∑

u,v

∑

d∈−→x ,−→y

Ψ(|∂dPu,v|e−α|∂dIg(u,v)|), (5)

where Ψ is defined as Ψ(s) =
√
s2 + 1e−6, Pu,v is the

predicted saliency map at position (u, v), and Ig(u, v) is

the image intensity, d indexes over partial derivative on −→x
and −→y directions. We set α = 10 following [56].

Both the smoothness loss (Eq. (5)) and the boundary

IOU loss (Eq. (3)) need intensity Ig. We convert the RGB

image I to a gray-scale intensity image Ig as [60]:

Ig = 0.2126× I lr + 0.7152× I lg + 0.0722× I lb, (6)

where I lr, I lg and I lb represent the color components in

the linear color space after Gamma function been removed

from the original color space. I lr is achieved via:

I
lr =















Ir

12.92
, I

r
≤ 0.04045,

(

Ir + 0.055

1.055

)2.4

, I
r
> 0.04045.

(7)

where Ir is the original red channel of image I , and we

compute Ig and Ib in the same way as Eq. (7).

4As the GT map Y ∈ {0, 1}, we produce series of binary predictions

with each one representing annotation from one saliency annotator.
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With smoothness loss LSmooth, depth loss LDepth and

CVAE loss LCVAE, our final loss function is defined as:

Lsal = LCVAE + λ1LDepth + λ2LSmooth. (8)

In our experiments, we set λ1 = λ2 = 0.3.

Training details: We set channel size of Sd as M = 32,

and scale of latent space as K = 8. We trained our

model using Pytorch, and initialized the encoder of Salien-

cyNet and DepthCorrectionNet with VGG16 parameters

pre-trained on ImageNet. Weights of new layers were ini-

tialized with N (0, 0.01), and bias was set as constant. We

used the Adam method with momentum 0.9 and decreased

the learning rate 10% after each epoch. The base learning

rate was initialized as 1e-4. The whole training took 13

hours with training batch size 6 and maximum epoch 30 on

a PC with an NVIDIA GeForce RTX GPU. For input image

size 352× 352, the inference time is 0.06s on average.

4. Experimental Results

4.1. Setup

Datasets: We perform experiments on six datasets includ-

ing five widely used RGB-D saliency detection datasets

(namely NJU2K [28], NLPR [41], SSB [40], LFSD [35],

DES [8]) and one newly released dataset (SIP [18]).

Competing Methods: We compare our method with 18 al-

gorithms, including ten handcrafted conventional methods

and eight deep RGB-D saliency detection models.

Evaluation Metrics: Four evaluation metrics are used, in-

cluding two widely used: 1) Mean Absolute Error (MAE

M); 2) mean F-measure (Fβ) and two recently proposed:

3) Enhanced alignment measure (mean E-measure, Eξ) [15]

and 4) Structure measure (S-measure, Sα) [14].

4.2. Performance Comparison

Quantitative Comparison: We report performance of our

method and competing methods in Table 1. It shows that our

method consistently achieves the best performance on all

datasets, especially on SSB [40] and SIP [18], our method

achieves significant S-measure, E-measure, and F-measure

performance boost and a decrease in MAE by a large mar-

gin. We show E-measure and F-measure curves of compet-

ing methods and ours in Fig. 7. We observe that our method

produces not only stable E-measure and F-measure but also

best performance.

Qualitative Comparisons: In Fig. 8, we show five im-

ages comparing results of our method with one newly re-

leased RGB-D saliency detection method (DMRA [61]),

and two widely used methods to produce structured outputs,

namely M-head [46] and MC-dropout [30] (we will discuss

these two methods in detail in the ablation study section).

We design both M-head and MC-dropout based structured

saliency detection models by replacing CVAE with M-head

and MC-dropout respectively. Results in Fig. 8 show that

our method can not only produce high accuracy predictions

(compared with DMRA [61]), but also diverse predictions

(compared with M-head based and MC-dropout based mod-

els) for images with complex background (image in the first

and last rows).

4.3. Ablation Study

We carried out eight experiments (shown in Table 2)

to thoroughly analyse our framework, including network

structure (“M1”, “M2”, “M3”), probabilistic model selec-

tion (“M4”, “M5”, “M6”), data source selection (“M7”) and

effectiveness of the new label generation technique (“M8”).

We make the number bold when it’s better than ours.

Scale of Latent Space: We investigate the influence of the

scale of the Gaussian latent space K in our network. In this

paper, after parameter tuning, we find K = 8 works best.

We show performance with K = 32 as “M1”. Performance

of “M1” is worse than our reported results, which indicates

that scale of the latent space is an important parameter in

our framework. We further carried out more experiments

with K ∈ [2, 12], and found relative stable predictions with

K ∈ [6, 10].

Effect of DepthCorrectionNet: To illustrate the effective-

ness of the proposed DepthCorrectionNet, we remove this

branch and feed the concatenation of the RGB image and

depth data to the SaliencyNet, shown as “M2”, which is

worse than our method. On DES [8] dataset, we observe

the proposed solution achieves around 4% improvement on

S-measure, E-measure and F-measure, which demonstrates

the effectiveness of the depth correction net.

Saliency Consencus Module: To mimic the saliency label-

ing process, we embed a saliency consensus module during

test in our framework (as shown in Fig. 3) to obtain the ma-

jority voting of the multiple predictions. We remove it from

our framework and test the network performance by random

sample from the latent PriorNet Pθ(z|X), and performance

is shown in “M3”, which is the best compared with compet-

ing methods. While, with the saliency consensus module

embedded, we achieve even better performance, which il-

lustrates effectiveness of the saliency consencus module.

VAE vs. CVAE: We use CVAE to model labeling variants,

and a PosteriorNet is used to estimate parameters for the

PriorNet. To test how our model performs with prior of z
as a standard normal distribution, and the posterior of z as

Pθ(z|X). VAE performance is shown as “M4”, which is

comparable with SOTA RGB-D models. With the CVAE

[50] based model proposed, we further boost performance

of “M4”, which proves effectiveness of the our solution.

Multi-head vs. CVAE: Multi-head models [46] generate

multiple predictions with different decoders and a shared

encoder, and the loss function is always defined as the clos-

est of the multiple predictions. We remove the LatentNet,
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Table 1. Benchmarking results of ten leading handcrafted feature-based models and eight deep models on six RGBD saliency datasets.

↑ & ↓ denote larger and smaller is better, respectively. Here, we adopt mean Fβ and mean Eξ [15].
Handcrafted Feature based Models Deep Models

Metric LHM CDB DESM GP CDCP ACSD LBE DCMC MDSF SE DF AFNet CTMF MMCI PCF TANet CPFP DMRA UC-Net

[41] [36] [8] [44] [66] [28] [20] [10] [51] [22] [43] [54] [24] [7] [5] [6] [64] [61] Ours

NJU2K [28]

Sα ↑ .514 .632 .665 .527 .669 .699 .695 .686 .748 .664 .763 .822 .849 .858 .877 .879 .878 .886 .897

Fβ ↑ .328 .498 .550 .357 .595 .512 .606 .556 .628 .583 .653 .827 .779 .793 .840 .841 .850 .873 .886

Eξ ↑ .447 .572 .590 .466 .706 .594 .655 .619 .677 .624 .700 .867 .846 .851 .895 .895 .910 .920 .930

M ↓ .205 .199 .283 .211 .180 .202 .153 .172 .157 .169 .140 .077 .085 .079 .059 .061 .053 .051 .043

SSB [40]

Sα ↑ .562 .615 .642 .588 .713 .692 .660 .731 .728 .708 .757 .825 .848 .873 .875 .871 .879 .835 .903

Fβ ↑ .378 .489 .519 .405 .638 .478 .501 .590 .527 .611 .617 .806 .758 .813 .818 .828 .841 .837 .884

Eξ ↑ .484 .561 .579 .508 .751 .592 .601 .655 .614 .664 .692 .872 .841 .873 .887 .893 .911 .879 .938

M ↓ .172 .166 .295 .182 .149 .200 .250 .148 .176 .143 .141 .075 .086 .068 .064 .060 .051 .066 .039

DES [8]

Sα ↑ .578 .645 .622 .636 .709 .728 .703 .707 .741 .741 .752 .770 .863 .848 .842 .858 .872 .900 .934

Fβ ↑ .345 .502 .483 .412 .585 .513 .576 .542 .523 .618 .604 .713 .756 .735 .765 .790 .824 .873 .919

Eξ ↑ .477 .572 .566 .503 .748 .613 .650 .631 .621 .706 .684 .809 .826 .825 .838 .863 .888 .933 .967

M ↓ .114 .100 .299 .168 .115 .169 .208 .111 .122 .090 .093 .068 .055 .065 .049 .046 .038 .030 .019

NLPR [41]

Sα ↑ .630 .632 .572 .655 .727 .673 .762 .724 .805 .756 .806 .799 .860 .856 .874 .886 .888 .899 .920

Fβ ↑ .427 .421 .430 .451 .609 .429 .636 .542 .649 .624 .664 .755 .740 .737 .802 .819 .840 .865 .891

Eξ ↑ .560 .567 .542 .571 .782 .579 .719 .684 .745 .742 .757 .851 .840 .841 .887 .902 .918 .940 .951

M ↓ .108 .108 .312 .146 .112 .179 .081 .117 .095 .091 .079 .058 .056 .059 .044 .041 .036 .031 .025

LFSD [35]

Sα ↑ .557 .520 .722 .640 .717 .734 .736 .753 .700 .698 .791 .738 .796 .787 .794 .801 .828 .847 .864

Fβ ↑ .396 .376 .612 .519 .680 .566 .612 .655 .521 .640 .679 .736 .756 .722 .761 .771 .811 .845 .855

Eξ ↑ .491 .465 .638 .584 .754 .625 .670 .682 .588 .653 .725 .796 .810 .775 .818 .821 .863 .893 .901

M ↓ .211 .218 .248 .183 .167 .188 .208 .155 .190 .167 .138 .134 .119 .132 .112 .111 .088 .075 .066

SIP [18]

Sα ↑ .511 .557 .616 .588 .595 .732 .727 .683 .717 .628 .653 .720 .716 .833 .842 .835 .850 .806 .875

Fβ ↑ .287 .341 .496 .411 .482 .542 .572 .500 .568 .515 .465 .702 .608 .771 .814 .803 .821 .811 .867

Eξ ↑ .437 .455 .564 .511 .683 .614 .651 .598 .645 .592 .565 .793 .704 .845 .878 .870 .893 .844 .914

M ↓ .184 .192 .298 .173 .224 .172 .200 .186 .167 .164 .185 .118 .139 .086 .071 .075 .064 .085 .051
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Figure 7. E-measure (1st row) and F-measure (2nd row) curves on four testing datasets.

and copy the decoder of the SaliencyNet multiple times

to achieve multiple predictions (“M5” in this paper). We

report performance in “M5” as mean of the multiple pre-

dictions. “M5” is better than SOTA models (e.g., DMRA)

while there still exists gap between M-head based method

(“M5”) and our CVAE based model (UC-Net).

Monte-Carlo Dropout vs. CVAE: Monte-Carlo Dropout

[30] uses dropout during the testing stage to introduce

stochastic to the network. We follow [30] to remove the La-

tentNet, and use dropout in the encoder and decoder of the

SaliencyNet in the testing stage. We repeats five times of

random dropout (dropout ratio = 0.1), and report the mean

performance as “M6”. Similar to “M5”, “M6” also achieves

the best performance comparing with SOTA models (e.g.,

CPFP and DMRA), while the proposed CVAE based model

achieves even better performance.

HHA vs. Depth: HHA [23] is a widely used technique that

encodes the depth data to three channels: horizontal dis-

parity, height above ground, and the angle the pixels local

surface normal makes with the inferred gravity direction.
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Figure 8. Comparisons of saliency maps. “MH1” and “MH2” are two predictions from M-head. “DP1” and “DP2” are predictions of

two random MC-dropout during test. “Ours(1)” and “Ours(2)” are two predictions sampled from our CVAE based model. Different from

M-head and MC-dropout, which produce consistent predictions for ambiguous images (5th row), UC-Net can produce diverse predictions.

Table 2. Ablation study on RGB-D saliency datasets.
Metric UC-Net M1 M2 M3 M4 M5 M6 M7 M8 M9

N
JU

2
K

[2
8

]

Sα ↑ .897 .866 .893 .905 .871 .885 .881 .893 .838 .866

Fβ ↑ .886 .858 .887 .884 .851 .878 .878 .884 .787 .812

Eξ ↑ .930 .905 .930 .927 .910 .923 .927 .932 .840 .866

M ↓ .043 .060 .046 .045 .059 .047 .046 .044 .084 .075

S
S
B

[4
0

] Sα ↑ .903 .854 .893 .900 .867 .891 .893 .898 .855 .872

Fβ ↑ .884 .831 .876 .868 .834 .864 .876 .882 .793 .805

Eξ ↑ .938 .894 .911 .922 .907 .921 .931 .934 .854 .870

M ↓ .039 .060 .043 .047 .057 .047 .043 .040 .073 .068

D
E

S
[8

] Sα ↑ .934 .876 .896 .928 .897 .911 .896 .918 .811 .911

Fβ ↑ .919 .844 .868 .902 .867 .897 .868 .904 .724 .843

Eξ ↑ .967 .906 .928 .947 .930 .945 .928 .953 .794 .910

M ↓ .019 .035 .026 .024 .033 .024 .026 .023 .065 .036

N
L

P
R

[4
1

] Sα ↑ .920 .878 .919 .918 .890 .899 .910 .915 .850 .883

Fβ ↑ .891 .846 .897 .878 .845 .875 .867 .889 .759 .795

Eξ ↑ .951 .911 .953 .941 .924 .937 .933 .951 .841 .883

M ↓ .025 .039 .024 .029 .037 .029 .028 .025 .057 .045

L
F

S
D

[3
5

] Sα ↑ .864 .799 .847 .862 .820 .838 .847 .853 .729 .823

Fβ ↑ .855 .791 .838 .841 .802 .833 .838 .848 .661 .779

Eξ ↑ .901 .829 .879 .885 .865 .875 .879 .891 .720 .818

M ↓ .066 .101 .079 .075 .093 .079 .079 .073 .145 .108

S
IP

[1
8

] Sα ↑ .875 .846 .867 .870 .851 .859 .867 .865 .810 .845

Fβ ↑ .867 .837 .860 .848 .821 .853 .860 .855 .751 .795

Eξ ↑ .914 .884 .908 .901 .893 .905 .908 .908 .816 .852

M ↓ .051 .068 .056 .059 .067 .057 .056 .056 .094 .079

HHA is widely used in RGB-D related dense prediction

models [11, 24] to obtain better feature representation. To

test if HHA also works in our scenario, we replace depth

with HHA, and performance is shown in “M7”. We observe

similar performance achieved with HHA instead of the raw

depth data.

New Label Generation: To produce diverse predictions,

we follow [49] and generate diverse annotations for the

training dataset. To illustrate the effectiveness of this strat-

egy, we train with only the SaliencyNet to produce single

channel saliency map with RGB-D image as input for sim-

plicity. “M8” and “M9” represent using the provided train-

ing dataset and augmented training data respectively. We

observe performance improvement of “M9” compared with

“M8”, which indicates effectiveness of the new label gener-

ation technique.

5. Conclusion

Inspired by human uncertainty in ground truth (GT) an-

notation, we proposed the first uncertainty network named

UC-Net for RGB-D saliency detection based on a con-

ditional variational autoencoder. Different from existing

methods, which generally treat saliency detection as a point

estimation problem, we propose to learn the distribution

of saliency maps. Under our formulation, our model is

able to generate multiple labels which have been discarded

in the GT annotation generation process through saliency

consensus. Quantitative and qualitative evaluations on six

standard and challenging benchmark datasets demonstrated

the superiority of our approach in learning the distribution

of saliency maps. In the future, we would like to extend

our approach to other saliency detection problems (e.g.,

VSOD [19], RGB SOD [13, 65], Co-SOD [17]). Further-

more, we plan to capture new datasets with multiple human

annotations to further model the statistics of human uncer-

tainty in interactive image segmentation [37], camouflaged

object detection [16], etc.
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