
Painting Many Pasts: Synthesizing Time Lapse Videos of Paintings

Amy Zhao

MIT

xamyzhao@mit.edu

Guha Balakrishnan

MIT

balakg@mit.edu

Kathleen M. Lewis

MIT

kmlewis@mit.edu
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Abstract

We introduce a new video synthesis task: synthesizing

time lapse videos depicting how a given painting might have

been created. Artists paint using unique combinations of

brushes, strokes, and colors. There are often many possible

ways to create a given painting. Our goal is to learn to

capture this rich range of possibilities.

Creating distributions of long-term videos is a challenge

for learning-based video synthesis methods. We present a

probabilistic model that, given a single image of a com-

pleted painting, recurrently synthesizes steps of the painting

process. We implement this model as a convolutional neural

network, and introduce a novel training scheme to enable

learning from a limited dataset of painting time lapses. We

demonstrate that this model can be used to sample many

time steps, enabling long-term stochastic video synthesis.

We evaluate our method on digital and watercolor paint-

ings collected from video websites, and show that human

raters find our synthetic videos to be similar to time lapse

videos produced by real artists. Our code is available at

https://xamyzhao.github.io/timecraft.

1. Introduction

Skilled artists can often look at a piece of artwork and de-

termine how to recreate it. In this work, we explore whether

we can use machine learning and computer vision to mimic

this ability. We define a new video synthesis problem: given

a painting, can we synthesize a time lapse video depicting

how an artist might have painted it?

Artistic time lapses present many challenges for video

synthesis methods. There is a great deal of variation in how

people create art. Suppose two artists are asked to paint the

same landscape. One artist might start with the sky, while

the other might start with the mountains in the distance. One

might finish each object before moving onto the next, while

Input Synthesized

Figure 1: We present a probabilistic model for synthesizing

time lapse videos of paintings. We demonstrate our model

on Still Life with a Watermelon and Pomegranates by Paul

Cezanne (top), and Wheat Field with Cypresses by Vincent

van Gogh (bottom).

the other might work a little at a time on each object. During

the painting process, there are often few visual cues indicat-

ing where the artist will apply the next stroke. The paint-

ing process is also long, often spanning hundreds of paint

strokes and dozens of minutes.

In this work, we present a solution to the painting time

lapse synthesis problem. We begin by defining the prob-

lem and describing its unique challenges. We then derive a

principled, learning-based model to capture a distribution of

steps that a human might use to create a given painting. We

introduce a training scheme that encourages the method to

produce realistic changes over many time steps. We demon-

strate that our model can learn to solve this task, even when

trained using a small, noisy dataset of painting time lapses

collected from the web. We show that human evaluators

almost always prefer our method to an existing video syn-

thesis baseline, and often find our results indistinguishable

from time lapses produced by real artists.

This work presents several technical contributions:

1. We use a probabilistic model to capture stochastic de-

cisions made by artists, thereby capturing a distribution

of plausible ways to create a painting.

2. Unlike work in future frame prediction or frame interpo-

lation, we synthesize long-term videos spanning dozens
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of time steps and many real-time minutes.

3. We demonstrate a model that successfully learns from

painting time lapses “from the wild.” This data is small

and noisy, having been collected from uncontrolled en-

vironments with variable lighting, spatial resolution and

video capture rates.

2. Related work

To the best of our knowledge, this is the first work that

models and synthesizes distributions of videos of the past,

given a single final frame. The most similar work to ours

is a recent method called visual deprojection [5]. Given

a single input image depicting a temporal aggregation of

frames, their model captures a distribution of videos that

could have produced that image. We compare our method

to theirs in our experiments. Here, we review additional

related research in three main areas: video prediction, video

interpolation, and art synthesis.

2.1. Video prediction

Video prediction, or future frame prediction, is the prob-

lem of predicting the next frame or few frames of a video

given a sequence of past frames. Early work in this area

focused on predicting motion trajectories [8, 16, 34, 51, 55]

or synthesizing motions in small frames [40, 41, 50]. Re-

cent methods train convolutional neural networks on large

video datasets to synthesize videos of natural scenes and

human actions [35, 38, 46, 52, 53]. A recent work on time

lapse synthesis focuses on outdoor scenes [43], simulating

illumination changes over time while keeping the content

of the scene constant. In contrast, creating painting time

lapses requires adding content while keeping illumination

constant. Another recent time lapse method outputs only a

few frames depicting specific physical processes: melting,

rotting, or flowers blooming [70].

Our problem differs from video prediction in several key

ways. First, most video prediction methods focus on short

time scales, synthesizing frames on the order of seconds

into the future, and encompassing relatively small changes.

In contrast, painting time lapses span minutes or even hours,

and depict dramatic content changes over time. Second,

most video predictors output a single most likely sequence,

making them ill-suited for capturing a variety of differ-

ent plausible painting trajectories. One study [63] uses a

conditional variational autoencoder to model a distribution

of plausible future frames of moving humans. We build

upon these ideas to model painting changes across mul-

tiple time steps. Finally, video prediction methods focus

on natural videos, which depict of motions of people and

objects [52, 53, 63] or physical processes [70]. The input

frames often contain visual cues about how the motion, ac-

tion or physical process will progress, limiting the space of

possibilities that must be captured. In contrast, snapshots of

paintings provide few visual cues, leading to many plausible

future trajectories.

2.2. Video frame interpolation

Our problem can be thought of as a long-term frame in-

terpolation task between a blank canvas and a completed

work of art, with many possible painting trajectories be-

tween them. In video frame interpolation, the goal is to

temporally interpolate between two frames in time. Classi-

cal approaches focus on natural videos, and estimate dense

flow fields [4, 58, 65] or phase [39] to guide interpolation.

More recent methods use convolutional neural networks to

directly synthesize the interpolated frame [45], or combine

flow fields with estimates of scene information [28, 44].

Most frame interpolation methods predict a single or a few

intermediate frames, and are not easily extended to predict-

ing long sequences, or predicting distributions of sequences.

2.3. Art synthesis

The graphics community has long been interested in sim-

ulating physically realistic paint strokes in digital media.

Many existing methods focus on physics-based models of

fluids or brush bristles [6, 7, 9, 12, 57, 62]. More re-

cent learning-based methods leverage datasets of real paint

strokes [31, 36, 68], often posing the artistic stroke syn-

thesis problem as a texture transfer or style transfer prob-

lem [3, 37]. Several works focus on simulating watercolor-

specific effects such as edge darkening [42, 56]. We fo-

cus on capturing large-scale, long-term painting processes,

rather than fine-scale details of individual paint strokes.

In style transfer, images are transformed to simulate a

specific style, such as a painting-like style [20, 21] or a

cartoon-like style [67]. More recently, neural networks have

been used for generalized artistic style transfer [18, 71]. We

leverage insights from these methods to synthesize a realis-

tic progressions of paintings.

Several recent papers apply reinforcement learning or

similar techniques to the process of painting. These ap-

proaches involve designing parameterized brush strokes,

and then training an agent to apply strokes to produce a

given painting [17, 22, 26, 27, 59, 60, 69]. Some works

focus on specific artistic tasks such as hatching or other

repetitive strokes [29, 61]. These approaches require careful

hand-engineering, and are not optimized to produce varied

or realistic painting progressions. In contrast, we learn a

broad set of effects from real painting time lapse data.

3. Problem overview

Given a completed painting, our goal is to synthesize

different ways that an artist might have created it. We

work with recordings of digital and watercolor painting

time lapses collected from video websites. Compared to
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Figure 2: Several real painting progressions of similar-

looking scenes. Each artist fills in the house, sky and field

in a different order.

natural videos of scenes and human actions, videos of paint-

ings present unique challenges.

High Variability

Painting trajectories: Even for the same scene, differ-

ent artists will likely paint objects in different temporal

orders (Figure 2).

Painting rates: Artists work at different speeds, and ap-

ply paint in different amounts.

Scales and shapes: Over the course of a painting, artists

use strokes that vary in size and shape. Artists often use

broad strokes early on, and add fine details later.

Data availability: Due to the limited number of available

videos in the wild, it is challenging to gather a dataset that

captures the aforementioned types of variability.

Medium-specific challenges

Non-paint effects: In digital art applications (e.g., [23]),

there are many tools that apply local blurring, smudging,

or specialized paint brush shapes. Artists can also apply

global effects simulating varied lighting or tones.

Erasing effects: In digital art applications, artists can

erase or undo past actions, as shown in Figure 3.

Physical effects in watercolor paintings: Watercolor

painting videos exhibit distinctive effects resulting from

the physical interaction of paint, water, and paper. These

effects include specular lighting on wet paint, pigments

fading as they dry, and water spreading from the point of

contact with the brush (Figure 4).

In this work, we design a learning-based model to han-

dle the challenges of high variability and painting medium-

specific effects.

Time

Figure 3: Example digital painting sequences. These se-

quences show a variety of ways to add paint, including fine

strokes and filling (row 1), and broad strokes (row 3). We

use red boxes to outline challenges, including erasing (row

2) and drastic changes in color and composition (row 3).

Time

Figure 4: Example watercolor painting sequences. The

outlined areas highlight some watercolor-specific chal-

lenges, including changes in lighting (row 1), diffusion and

fading effects as paint dries (row 2), and specular effects on

wet paint (row 3).

4. Method

We begin by formalizing the time lapse video synthesis

problem. Given a painting xT , our task is to synthesize the

past frames x1, · · · , xT−1. Suppose we have a training set

of real time lapse videos {x(i) = x
(i)
1 , · · · , x

(i)

T (i)}. We first

define a principled probabilistic model, and then learn its

parameters using these videos. At test time, given a com-

pleted painting, we sample from the model to create new

videos of realistic-looking painting processes.

4.1. Model

We propose a probabilistic, temporally recurrent model

for changes made during the painting process. At each time

instance t, the model predicts a pixel-wise intensity change

δt that should be added to the previous frame to produce the

current frame; that is, xt = xt−1 + δt. This change could

represent one or multiple physical or digital paint strokes,

or other effects such as erasing or fading.

We model δt as being generated from a random la-

tent variable zt, the completed piece xT , and the image

content at the previous time step xt−1; the likelihood is
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𝑡𝛿𝑡𝑧𝑡

𝑥𝑇
𝑥𝑡−1

𝜃Final frame

Previous frame Current change

Figure 5: The proposed probabilistic model. Circles rep-

resent random variables; the shaded circle denotes a vari-

able that is observed at inference time. The rounded rectan-

gle represents model parameters.

pθ(δt|zt, xt−1;xT ) (Figure 5). Using a random variable zt
helps to capture the stochastic nature of painting. Using

both xT and xt−1 enables the model to capture time-varying

effects such as the progression of coarse to fine brush sizes,

while the Markovian assumption facilitates learning from a

small number of video examples.

It is common to define such image likelihoods as a

per-pixel normal distribution, which results in an L2 im-

age similarity loss term in maximum likelihood formula-

tions [33]. In synthesis tasks, using L2 loss often pro-

duces blurry results [24]. We instead design our image sim-

ilarity loss as the L1 distance in pixel space and the L2

distance in a perceptual feature space. Perceptual losses

are commonly used in image synthesis and style transfer

tasks to produce sharper and more visually pleasing re-

sults [14, 24, 30, 45, 66]. We use the L2 distance between

normalized VGG features [49] as described in [66]. We let

the likelihood take the form:

pθ(δt|zt, xt−1;xT )

∝ e
− 1

σ2
1

|δt−δ̂t|
N
(

V (xt−1 + δt);V (xt−1 + δ̂t), σ
2

2■
)

, (1)

where δ̂t = gθ(zt, xt−1, xT ), gθ(·) represents a function pa-

rameterized by θ, V (·) is a function that extracts normalized

VGG features, and σ1, σ2 are fixed noise parameters.

We assume the latent variable zt is generated from the

multivariate standard normal distribution:

p(zt) = N (zt; 0, ■). (2)

We aim to find model parameters θ that best explain all

videos in our dataset:

argmax
θ

ΠiΠtpθ(δ
(i)
t , x

(i)
t−1, x

(i)

T (i))

= argmax
θ

ΠiΠt

∫

zt

pθ(δ
(i)
t |z

(i)
t , x

(i)
t−1;x

(i)

T (i))dzt. (3)

This integral is intractable, and the posterior

p(zt|δt, xt−1;xT ) is also intractable, preventing the

use of the EM algorithm. We instead use variational infer-

ence and introduce an approximate posterior distribution

𝑧Σ
𝑥𝑡−1 𝑥𝑇

C C

dense

sampling

ℒ𝐾𝐿 መ𝛿𝑡 ො𝑥𝑡3x3 

transposed 

conv

ℒ𝐿1 + ℒ𝐿2

D

down-
sample

Auto-encoding branch

(used in training only)𝑥𝑡

𝑥𝑡−1 𝑥𝑇Conditioning branch

add painting change

concatenate

3x3 conv, 

pool

𝜇
T T C +

concatenate

Figure 6: Neural network architecture. We imple-

ment our model using a conditional variational autoencoder

framework. At training time, the network is encouraged to

reconstruct the current frame xt, while sampling the latent

zt from a distribution that is close to the standard normal.

At test time, the auto-encoding branch is removed, and zt
is sampled from the standard normal. We use the shorthand

δ̂t = gθ(zt, xt−1, xT ), x̂t = xt−1 + δ̂t.

p(zt|δt, xt−1;xT ) ≈ qφ(zt|δt, xt−1;xT ) [32, 63, 64].

We let this approximate distribution take the form of a

multivariate normal:

qφ(zt|δt, xt−1, xT )

= N
(

zt;µφ(δt, xt−1, xT ),Σφ(δt, xt−1, xT )
)

, (4)

where µφ(·),Σφ(·) are functions parameterized by φ, and

Σφ(·) is diagonal.

4.1.1 Neural network framework

We implement the functions gθ, µφ and Σφ as a convo-

lutional encoder-decoders parameterized by θ and φ, us-

ing a conditional variational autoencoder (CVAE) frame-

work [54, 64]. We use an architecture (summarized in Fig-

ure 6) similar to [64]. We include full details in the ap-

pendix.

4.2. Learning

We learn model parameters using short sequences from

the training video dataset, which we discuss in further de-

tail in Section 5.1. We use two stages of optimization to

facilitate convergence: pairwise optimization, and sequence

optimization.

4.2.1 Pairwise optimization

From Equations (3) and (4), we obtain an expression for

each pair of consecutive frames (a derivation is provided in

the appendix):
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𝑞𝜙 𝑞𝜙 𝑞𝜙ෝ𝒙𝒕+𝟏 ෝ𝒙𝒕+𝑺ෝ𝒙𝒕 ⋯𝑥𝑇
𝑥𝑡𝑥𝑡−1

Image 

similarity loss

𝑥𝑡+1 𝑥𝑡+𝑆
𝑧𝑡 𝑧𝑡+1 𝑧𝑡+𝑆

Image 

similarity loss

Image 

similarity loss

𝑥𝑇 𝑥𝑇
Figure 7: Sequential CVAE training. Our model is trained

to reconstruct a real frame (outlined in green) while building

upon its previous predictions for S time steps.

log pθ(δt, xt−1, xT )

≥ Ezt∼qφ(zt|xt−1,δt;xT )

[

log pθ(δt|zt, xt−1;xT )
]

−KL[qφ(zt|δt, xt−1;xT )||p(zt)], (5)

where KL[·||·] denotes the Kullback-Liebler divergence.

Combining Equations (1), (2), (4), and (5), we minimize:

LKL +
1

σ2
1

LL1(δt, δ̂t)

+
1

2σ2
2

LL2(V GG(xt−1 + δt), V GG(xt−1 + δ̂t)), (6)

where LKL = 1
2

(

− log Σφ + Σφ + µ2
φ

)

, and the image

similarity terms LL1,LL2 represent L1 and L2 distance re-

spectively.

We optimize Equation (6) on single time steps, which we

obtain by sampling all pairs of consecutive frames from the

dataset. We also train the model to produce the first frame

x1 from videos that begin with a blank canvas, given a white

input frame xblank, and xT . These starter sequences teach

the model how to start a painting at inference time.

4.2.2 Sequence optimization

To synthesize an entire video, we run our model recurrently

for multiple time steps, building upon its own predicted

frames. It is common when making sequential predictions

to observe compounding errors or artifacts over time [52].

We use a novel sequential training scheme to encourage out-

puts of the model to be accurate and realistic over multiple

time steps. We alternate between two training modes.

Sequential CVAE training encourages sequences of

frames to be well-captured by the learned distribution, by

reducing the compounding of errors. We train the model

sequentially for a few time steps, predicting each inter-

mediate frame x̂t using the model’s prediction from the

previous time step: x̂t = x̂t−1 + gθ(zt, x̂t−1, xT ) for

zt ∼ qφ(zt|xt − x̂t−1, x̂t−1, xT ). We compare each pre-

dicted frame to the corresponding real frame using the im-

age similarity losses in Eq. (6). We illustrate this in Figure

7.

Sequential sampling training encourages random samples

from our learned distribution to look like realistic partially-

completed paintings. During inference (described below),

ෝ𝒙𝟐𝑡 = 2 ෝ𝒙𝝉𝑥𝑏𝑙𝑎𝑛𝑘 ෝ𝒙𝟏 𝑥𝑇
Image 

similarity loss

𝑡 = 1 𝑡 = 𝜏
𝑧2 𝑧𝜏𝑧1

𝑁(𝑧; 0, 𝑰) 𝑁(𝑧; 0, 𝑰) 𝑁(𝑧; 0, 𝑰)
⋯𝑥𝑇

Critic loss Critic loss Critic loss

𝑥𝑇 𝑥𝑇
Figure 8: Sequential sampling training. We use a con-

ditional frame critic to encourage all frames sampled from

our model to look realistic. The image similarity loss on the

final frame encourages the model to complete the painting

in τ time steps.

we rely on sampling from the prior p(zt) at each time step

to synthesize new videos. A limitation of the variational

strategy is the limited coverage of the latent space zt during

training [15], sometimes leading to unrealistic predictions

x̂t = x̂t−1 + gθ(zt, x̂t−1, xT ) for zt ∼ p(zt). To compen-

sate for this, we introduce supervision on such samples by

amending the image similarity term in Equation (5) with a

conditional critic loss term [19]:

Lcritic =Ezt∼p(zt)

[

Dψ

(

x̂t, x̂t−1, xT
)]

− Ext

[

Dψ(xt, xt−1, xT )
]

, (7)

where Dψ(·) is a critic function with parameters ψ.

The critic encourages the distribution of sampled painting

changes δ̂t = gθ(zt, x̂t−1, xT ), zt ∼ p(zt) to match the dis-

tribution of training painting changes δt. We use a critic

architecture based on [10] and optimize it using WGAN-

GP [19].

In addition to the critic loss, we apply the image similarity

losses discussed above after τ time steps, to encourage the

model to eventually produce the completed painting. This

training scheme is summarized in Figure 8.

4.3. Inference: video synthesis

Given a completed painting xT and learned model pa-

rameters θ, φ, we synthesize videos by sampling from the

model at each time step. Specifically, we synthesize each

frame x̂t = x̂t−1 + gθ(zt, x̂t−1, xT ) using the synthesized

previous frame x̂t−1 and a randomly sampled zt ∼ p(zt).
We start each video using x̂0 = xblank, a blank frame.

4.4. Implementation

We implement our model using Keras [11] and Tensor-

flow [1]. We experimentally selected the hyperparameters

controlling the reconstruction loss weights to be σ1 = σ2 =
0.1, using the validation set.

5. Experiments

5.1. Datasets

We collected time lapse recordings of paintings from

YouTube and Vimeo. We selected digital and watercolor
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Figure 9: Diversity of sampled videos. We show exam-

ples of our method applied to a digital (top 3 rows) and a

watercolor (bottom 3 rows) painting from the test set. Our

method captures diverse and plausible painting trajectories.

paintings (which are common painting methods on these

websites), and focused on landscapes or still lifes (which

are common subjects for both mediums). We downloaded

each video at 360×640 resolution and cropped it temporally

and spatially to include only the painting process (excluding

other content such as introductions or sketching). We split

each dataset in a 70:15:15 ratio into training, validation, and

held-out test video sets.

Digital paintings: We collected 117 digital painting time

lapses. The average duration is 4 minutes, with many videos

having already been sped up by artists using the Procreate

application [23]. We selected videos with minimal zoom-

ing and panning. We manually removed segments that con-

tained movements such as translations, flipping and zoom-

ing. Figure 3 shows example video sequences.

Watercolor paintings: We collected 116 watercolor time

lapses, with an average duration of 20 minutes. We only

kept videos that contained minimal movement of the paper,

and manually corrected any small translations of the paint-

ing. We show examples in Figure 4.

A challenge with videos of physical paintings is the pres-

ence of the hand, paintbrush and shadows in many frames.

We trained a simple convolutional neural network to iden-

tify and remove frames that contained these artifacts.

5.1.1 Sequence extraction

We synthesize time lapses at a lower temporal resolution

than real-time for computational feasibility. We extract

training sequences from raw videos at a period of γ > 0

frames (i.e., skipping γ frames in each synthesized time

step), with a maximum variance of ǫ frames. Allowing

some variance in the sampling rate is useful for (1) im-

proving robustness to varied painting rates, and (2) ex-

tracting sequences from watercolor painting videos where

many frames containing hands or paintbrushes have been

removed. We select γ and ǫ independently for each dataset.

We avoid capturing static segments of each video (e.g.,

when the artist is speaking) by requiring that adjacent

frames in each sequence have at least 1% of the pixels

changing by a fixed intensity threshold. We use a dynamic

programming method to find all training and validation se-

quences that satisfy these criteria. We train on sequences

of length 3 or 5 for sequential CVAE training, and length

τ = 40 for sequential sampling training, which we deter-

mined using experiments on the validation set. For evalua-

tions on the test set, we extract a single sequence from each

test video that satisfies the filtering criteria.

5.1.2 Crop extraction

To facilitate learning from small numbers of videos, we use

multiple crops from each video. We first downsample each

video spatially to 126 × 168, so that most patches contain

visually interesting content and spatial context, and then ex-

tract 50× 50 crops with minimal overlap.

5.2. Baselines

Deterministic video synthesis (unet): In image synthesis

tasks, it is common to use an encoder-decoder architecture

with skip connections, similar to U-Net [24, 47]. We adapt

this technique to synthesize an entire video at once.

Stochastic video synthesis (vdp): Visual deprojection syn-

thesizes a distribution of videos from a single temporally-

projected input image [5].

We design each baseline model architecture to have a com-

parable number of parameters to our model. Both baselines

output videos of a fixed length, which we choose to be 40
to be comparable to our choice of τ = 40 in Section 5.1.

5.3. Results

We conducted both quantitative and qualitative eval-

uations. We first present a user study quantifying hu-

man perception of the realism of our synthesized videos.

Next, we qualitatively examine our synthetic videos,

and discuss characteristics that contribute to their real-

ism. Finally, we discuss quantitative metrics for com-

paring sets of sampled videos to real videos. We

show additional results, including videos and visualiza-

tions using the tipiX tool [13] on our project page at

https://xamyzhao.github.io/timecraft.
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(a) Similarly to the artist, our method paints in a coarse-to-fine manner. Blue arrows show where our method first applies a flat color, and

then adds fine details. Red arrows indicate where the baselines add fine details even in the first time step.
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(b) Our method works on similar regions to the artist, although it does not use the same color layers to achieve the completed painting.

Blue arrows show where our method paints similar parts of the scene to the artist (filling in the background first, and then the house, and then

adding details to the background). Red arrows indicate where the baselines do not paint according to semantic boundaries, gradually fading in

the background and the house in the same time step.

Figure 10: Videos predicted from the digital (top) and watercolor (bottom) test sets. For the stochastic methods vdp and

ours, we show the nearest sample to the real video out of 2000 samples. We show additional results in the appendices.

Comparison
All

paintings

Watercolor

paintings

Digital

paintings

real > vdp 90% 90% 90%

real > ours 55% 60% 51%

ours > vdp 91% 90% 88%

Table 1: User study results. Users compared the realism of pairs

of videos randomly sampled from ours, vdp, and real videos. The

vast majority of participants preferred our videos over vdp videos

(p < 0.0001). Similarly, most participants chose real videos over

vdp videos (p < 0.0001). Users preferred real videos over ours

(p = 0.0004), but many participants confused our videos with the

real videos, especially for digital paintings.

We experimented with training each method on digital

or watercolor paintings only, as well as on the combined

paintings dataset. For all methods, we found that training

on the combined dataset produced the best qualitative and

quantitative results (likely due to our limited dataset size),

and we only present results for those models.

5.3.1 Human evaluations

We surveyed 158 people using Amazon Mechanical

Turk [2]. Participants compared the realism of pairs of

videos randomly sampled from ours, vdp, or the real videos.

In this study, we omit the weaker baseline unet, which per-

formed consistently worse on all metrics (discussed below).

We first trained the participants by showing them several

examples of real painting time lapses. We then presented

a pair of time lapse videos generated by different methods

for the center crop of the same painting, and asked “Which

8441



video in each pair shows a more realistic painting process?”

We repeated this process for 14 randomly sampled paintings

from the test set. Full study details are in the appendix.

Table 1 indicates that almost every participant thought

videos synthesized by our model looked more realistic than

those synthesized by vdp (p < 0.0001). Furthermore, par-

ticipants confused our synthetic videos with real videos

nearly half of the time. In the next sections, we show ex-

ample synthetic videos and discuss aspects that make our

model’s results appear more realistic, offering an explana-

tion for these promising user study results.

5.3.2 Qualitative results

Figure 9 shows sample sequences produced by our model

for two input paintings. Our model chooses different order-

ings of semantic regions during the painting process, lead-

ing to different paths that still converge to the same com-

pleted painting.

Figure 10 shows videos synthesized by each method. To

objectively compare the stochastic methods vdp and ours,

we show the most similar predicted video by L1 distance to

the ground truth video. The ground truth videos show that

artists tend to paint in a coarse-to-fine manner, using broad

strokes near the start of a painting, and finer strokes near

the end. Artists also tend to focus on one or a few seman-

tic regions in each time step. As we highlight with arrows,

our method captures these tendencies better than baselines,

having learned to make changes within separate semantic

regions such as mountains, cabins and trees. Our predicted

trajectories are similar to the ground truth, showing that our

sequential modeling approach is effective at capturing real-

istic temporal progressions. In contrast, the baselines tend

to make blurry changes without separating the scene into

components.

5.3.3 Quantitative results

In a stochastic task, comparing synthesized results to

“ground truth” is ill-defined, and developing quantitative

measures of realism is difficult [25, 48]; these challenges

motivated our user study above. In this section, we explore

quantitative metrics designed to measure aspects of time

lapse realism. For each video in the test set, we extract a

40-frame long sequence according to the criteria described

in Section 5.1.1, and evaluate each method on 5 random

crops using several video similarity metrics:

Best (across k samples) overall video distance (lower is

better): For each crop, we draw k sample videos from each

model and report the closest sample to the true video by L1

distance [5]. This captures whether a model produces some

realistic samples, and whether the model is diverse enough

to capture each artist’s specific choices.

Method
Digital paintings Watercolor paintings

L1 Change IOU L1 Change IOU

interp 0.49 (0.13) 0.17 (0.06) 0.38 (0.09) 0.17 (0.09)
unet 0.18 (0.08) 0.24 (0.08) 0.15 (0.06) 0.27 (0.07)
vdp 0.16 (0.06) 0.31 (0.10) 0.14 (0.05) 0.32 (0.08)
ours 0.16 (0.05) 0.36 (0.09) 0.14 (0.05) 0.36 (0.07)

Table 2: We compare videos synthesized from the digital

and watercolor painting test sets to the artists’ videos. For

the stochastic methods vdp and ours, we draw 2000 video

samples and report the closest one to the ground truth.

Best (across k samples) painting change shape similar-

ity (higher is better): We quantify how similar the set of

painting change shapes are between the ground truth and

each predicted video, disregarding the order in which they

were performed. We define the painting change shape as

a binary map of the changes made in each time step. For

each time step in each test video, we compare the artist’s

change shape to the most similarly shaped change synthe-

sized by each method, as measured by intersection-over-

union (IOU). This captures whether a method paints in sim-

ilar semantic regions to the artist.

We summarize these results in Table 2. We introduce

the interp baseline, which linearly interpolates in time, as a

quantitative lower bound. The deterministic interp and unet

approaches perform poorly for both metrics. For k = 2000,

vdp and our method produce samples that lead to compa-

rable “best video similarity” by L1 distance, highlighting

the strength of methods designed to capture distributions of

videos. The painting change IOU metric shows that our

method synthesizes changes that are significantly more re-

alistic than the other methods.

6. Conclusion

In this work, we introduce a new video synthesis prob-

lem: making time lapse videos that depict the creation of

paintings. We proposed a recurrent probabilistic model that

captures the stochastic decisions of human artists. We intro-

duced an alternating sequential training scheme that encour-

ages the model to make realistic predictions over many time

steps. We demonstrated our model on digital and water-

color paintings, and used it to synthesize realistic and varied

painting videos. Our results, including human evaluations,

indicate that the proposed model is a powerful first tool for

capturing stochastic changes from small video datasets.
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