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Abstract

The performance of existing point cloud-based 3D ob-

ject detection methods heavily relies on large-scale high-

quality 3D annotations. However, such annotations are of-

ten tedious and expensive to collect. Semi-supervised learn-

ing is a good alternative to mitigate the data annotation

issue, but has remained largely unexplored in 3D object de-

tection. Inspired by the recent success of self-ensembling

technique in semi-supervised image classification task, we

propose SESS, a self-ensembling semi-supervised 3D ob-

ject detection framework. Specifically, we design a thor-

ough perturbation scheme to enhance generalization of the

network on unlabeled and new unseen data. Furthermore,

we propose three consistency losses to enforce the consis-

tency between two sets of predicted 3D object proposals,

to facilitate the learning of structure and semantic invari-

ances of objects. Extensive experiments conducted on SUN

RGB-D and ScanNet datasets demonstrate the effectiveness

of SESS in both inductive and transductive semi-supervised

3D object detection. Our SESS achieves competitive per-

formance compared to the state-of-the-art fully-supervised

method by using only 50% labeled data. Our code is avail-

able at https://github.com/Na-Z/sess.

1. Introduction

Point cloud-based 3D object detection is the task to esti-

mate the object category and oriented 3D bounding box for

all objects in the scene. This task has always been a great

interest to computer vision and robotics communities due to

its potential real-world applications in many areas such as

autonomous driving, domestic robotics, augmented/virtual

reality, etc. In recent years, many deep learning-based ap-

proaches for point cloud-based 3D object detection [1, 7, 9,

11, 12, 16, 17, 18, 24, 27, 29] have emerged and achieved

high performances on various benchmark datasets [2, 3, 19].

Despite the impressive performances, most of the existing

deep learning-based approaches for 3D object detection on

point clouds are strongly supervised and require the avail-

ability of a large amount of well-annotated 3D data that is
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Figure 1: Semi-supervised 3D object detection pipeline. Our

SESS can predict 3D bounding boxes and semantic labels of ob-

jects for an unlabeled scene after training with a mixture of labeled

data and unlabeled data.

often time-consuming and expensive to collect.

Semi-supervised learning is a promising alternative to

strongly supervised learning for point cloud-based 3D ob-

ject detection. This is because semi-supervised learning re-

quires only few labeled data, and this largely alleviates the

difficulty to collect enormous amount of labeled data. Fur-

thermore, the available few strong labels can still provide

the necessary supervision to guide the deep network into

learning the correct information for 3D object detection.

Information from the few strong labels can also be propa-

gated to the unlabeled data to improve learning. A complete

removal of strong labels in the training data would be ex-

tremely challenging for the deep network to learn anything

meaningful. This is due to the inherent difficulty for a deep

network to precisely detect 3D bounding boxes of objects

in the point cloud, where points are sparsely distributed,

and/or the scene is partially visible and incomplete due to

occlusions and 3D amodal perception. To the best of our

knowledge, [21] is currently the only existing work to learn

a deep network for point cloud-based 3D object detection

without strong supervision. More specifically, they propose

a cross-category semi-supervised learning where 3D ground

truth labels are needed for a set of object classes, and 2D

ground truth labels are required for all object classes. Al-

though promising results are achieved in [21], the approach

requires RGB-D input and does not work on pure 3D point
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clouds. Moreover, it still requires a large amount of 3D la-

bels on the strong object classes.

In view of the potential of semi-supervised learning

and limitations in [21], we address the in-category semi-

supervised 3D object detection problem with 3D point

cloud as the only input in this paper. In contrast to cross-

category semi-supervision, in-category semi-supervision

means that the training data contains few strongly labeled

point clouds and a large number of unlabeled point clouds.

Furthermore, the strongly labeled point clouds are assumed

to contain all object classes of interests, albeit few examples

per object class. To this end, we propose SESS - a Self-

Ensembling Semi-Supervised 3D object detection frame-

work for point clouds. More specifically, our SESS achieves

semi-supervision with a Mean Teacher paradigm [22] that

contains a teacher and student 3D object detection net-

work. The teacher guides the predictions of the student to be

consistent with its predictions under random perturbations,

where these predictions are sets of 3D object proposals. In

other words, we want the 3D object proposals from both

teacher and student networks to be aligned at the end of the

training stage. We propose three consistency losses based

on the center, class and size of the 3D object proposals to

encourage alignment of the 3D object proposals from the

teacher and student networks. Our three consistency losses

encode both geometry and semantic information to guide

the network towards learning precise coordinates of the 3D

bounding boxes and accurate object categories. We con-

duct experiments of our SESS framework on two bench-

mark datasets. Promising results over baseline and strongly

supervised approaches validate our semi-supervised learn-

ing approach for the challenging task of point cloud-based

3D object detection in both inductive and transductive semi-

supervised learning settings.

2. Related work

2.1. 3D Object Detection

A number of approaches have been proposed for 3D ob-

ject detection task, which can be briefly summarized into

three different types based on their input data formats: 2D

projection [8, 9, 18, 26], voxel grid [1, 7, 15, 20, 16, 25, 29],

and point cloud [5, 11, 12, 17, 24, 27, 28]. The 2D pro-

jection and voxel grid based methods are proposed to cir-

cumvent the difficulty in processing irregular point clouds

by either projecting 3D data into 2D representations (e.g.

front-view, or bird’s eye view) or voxelizing it into regular

grids. To efficiently localize 3D objects in the point cloud

of a 3D space, [5, 12, 24] leverage on mature 2D object

detectors to trim a 3D bounding frustum for each detected

object, for 3D search space reduction, while [11, 17, 27, 28]

explore the sparsity of 3D data and generate 3D proposals

around seed points that are determined by different manners

(e.g. segmenting [17] or voting [11]). Despite the significant

improvement achieved by the existing detection models, a

large number of high-quality 3D ground truths are required

for training. This limits their applicability in practice, where

the ground truths are expensive to acquire.

In order to alleviate the limitation and leverage the

abundant unlabeled data that are easier to access, semi-

supervised 3D object detection is a promising direction

to exploit. However, there is no existing semi-supervised

point cloud-based 3D object detection approach that only

involves a small set of labeled data. The most closely re-

lated work is proposed recently by Tang and Lee in [21].

They propose a cross-category semi-supervised 3D object

detection method. However, it requires all the 2D box la-

bels and some of the 3D box labels. We consider this

setting as “mix supervised” to differentiate with our semi-

supervised setting where few labeled samples are used with

plentiful of unlabeled samples. Furthermore, [21] follows

the two-step pipeline in [12] to restrict the object localizing

space: the first step is 2D object detection on RGB images

and the second step is 3D object detection in the frustum

point clouds yielded from the 2D detections. This two-step

pipeline means that the performance is tightly dependent on

the performance of the 2D detector. In this work, we di-

rectly process the raw point cloud in one step to remove the

dependency on 2D modality.

2.2. Semi­Supervised Learning

Semi-Supervised Learning (SSL) attracts growing inter-

est in a wide range of research areas (e.g. image classifi-

cation and segmentation) by virtue of its aim to learn from

both labeled and unlabeled data simultaneously. Many ap-

proaches have been proposed to solve SSL. Due to the

space limitation, we only review self-ensembling based ap-

proaches, the most promising direction in SSL recently.

The idea behind self-ensembling approaches is to im-

prove the generalization of a model by encouraging consen-

sus among ensemble predictions of unknown samples under

small perturbations of inputs or network parameters. For

instance, Γ model [13], a variation of ladder network [23],

consists of two identical parallel branches that respectively

take one image and the corrupted version of the image as

input. The consistency loss is computed based on the differ-

ence between the (pre-activated) predictions from the clean

branch and the (pre-activated) corrupted branches processed

by an explicit denoising layer. In contrast to Γ model, Π
model [6] discards the explicit denoising layer and inputs

the same image with different corruption conditions into

a single branch. Virtual Adversarial Training [10] shares

similar idea with the Π model but uses adversarial perturba-

tion instead of independent noise. Temporal model [6], an

extension of Π model, forces the consistency between the

recent network output and the aggregation of network pre-
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Figure 2: The architecture of our SESS. In this figure, a training batch, including a set of labeled sample {xL} and a set of unlabeled

samples {xU}, is passed through different perturbations and then input into the student and the teacher network, respectively. The predic-

tions of the student network are compared with the corresponding ground truth labels {yL} processed by the same transformation T using

supervised loss and with the teacher predictions processed by the same transformation T using consistency loss.

dictions over multiple previous training epochs rather than

predictions from auxiliary corrupted input. However, this

model becomes cumbersome when applied to large dataset

because it needs to maintain a per-sample moving average

of the historical network predictions. Mean Teacher [22]

tackles the weakness of temporal model by replacing net-

work prediction average with network parameter average.

It contains two network branches - teacher and student with

the same architecture. The parameters of the teacher are the

exponential moving average of the student network param-

eters that are updated by stochastic gradient descent. The

student network is trained to yield consistent predictions

with the teacher network. We choose the Mean Teacher

paradigm as the basis of our framework, and adapt it to the

3D object detection task.

3. Our Method

3.1. Problem Definition

Given any point cloud of a scene as input, our objec-

tive is to classify and localize amodal 3D bounding boxes

for objects in the 3D scene. In the semi-supervised setting,

we have access to N training samples, including Nl labeled

point clouds PL = {xLi , yLi }
Nl

i=1 and Nu unlabeled point

clouds PU = {xUi }
Nu

i=1. Here xi ∈ R
n×3 denotes the point

cloud of a 3D scene, containing n points with coordinates;

and yLi denotes the ground truth annotations for all the inter-

ested objects in the 3D point cloud xL
i . Each object is rep-

resented by a semantic class s (1-of-K predefined classes)

and an amodal 3D bounding box parameterized by its center

c = (cx, cy, cz), size d = (l, w, h), and orientation θ along

the upright-axis.

3.2. SESS Architecture

The illustration of our SESS architecture is shown in

Figure 2. We use the Mean Teacher paradigm [22] in our

semi-supervised 3D object detection task, where the student

and the teacher networks are 3D object detectors. The stu-

dent and teacher networks take the perturbed point clouds

as input and output the 3D object proposals, which repre-

sent the estimated classes and 3D bounding boxes of all the

objects of interest in the point cloud. We adopt the state-of-

the-art VoteNet1 [11] as our backbone for the student and

teacher networks. More specifically, SESS takes a training

batch with a mixture of labeled and unlabeled point clouds:

{xL
i }

Bl

i=1 ∪ {xUi }
Bu

i=1, where Bl and Bu denote the labeled

and unlabeled samples in a batch, respectively. We ran-

domly sample M points from each training point cloud, i.e.

xL or xU , twice to get two sets of points. The first set of

points xs is perturbed into x̂s by a stochastic transforma-

tion T and then passed to the student network, while the

second set of points xt is directly passed to the teacher net-

work. The output proposals from the teacher network yt
are further transformed to ŷt by the T applied on xs pre-

viously. For each proposal in ŷt, we find its closest align-

ment from the output proposals of the student network ŷs

based on the Euclidean distance. Subsequently, the error

between each aligned proposal pair is computed from three

consistency losses. Concurrently, the set of ground truths

yL is also transformed by the same T applied on xLs , and

the transformed ŷ
L

is compared with the labeled output of

the student network ŷ
L
s using a supervised loss. Finally, the

parameters of the student network Φ is updated via gradient

descent at training step t, and then the updated parameters

from the student network are used in an exponential mov-

ing average (EMA) to update the parameters of the teacher

network Φ̃:
Φ̃t+1 = αΦ̃t + (1− α)Φt, (1)

where α is a smoothing hyper-parameter that controls how

much information the teacher takes from the student net-

work. For supervised loss, we take the same multi-task loss

1It is worth highlighting that instead of designing a specific detector

model, our proposed framework is model-agnostic and any existing point

cloud-based 3D object detection network can be used.
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as in [11]. We will introduce our perturbation scheme and

consistency losses for adapting the Mean Teacher paradigm

into the 3D object detection task below.

3.3. Perturbation Scheme

As mentioned in [6, 22], input perturbation or data aug-

mentation play an essential role in the success of self-

ensembling approaches. The perturbation schemes of the

Mean Teacher on image-based tasks, e.g. image recogni-

tion, include random translations and horizontal flips of the

input images, adding Gaussian noises on the input layer,

and applying dropouts within the network. However, none

of the image-based perturbation schemes can be used di-

rectly for our point cloud-based 3D object detection task.

Consequently, we propose a perturbation scheme suitable

for point cloud-based 3D object detection in this paper.

Random Sub-sampling. We apply random sub-sampling

on the input point cloud to both the student and teacher

networks as part of our perturbation scheme. The local

geometrical relationship of the points in two random sub-

samples of a given point cloud might differ significantly,

but the global geometry, i.e. the 3D bounding box locations

of the objects, in the sub-sampled point clouds should re-

main the same. As a result, our model is trained to exploit

the underlying geometry in the global context by forcing the

consistency between the stochastic outputs from the student

and teacher networks.

Stochastic Transform. We apply stochastic transforma-

tions that include flipping, rotation and scaling on the ran-

domly sub-sampled point cloud for the student network to

prevent the network from memorizing unintended proper-

ties of the training point clouds, e.g. the absolute posi-

tion of each point. More specifically, we formulate the

transformation operations as a set of stochastic variables

T = {Fx,Fy,R,S}. Here Fx represents a random flip

along the x-axis, and its binary value is determined by:

Fx =

{

1 if ǫ > 0.5,

0 otherwise,
(2)

where ǫ is a random variable uniformly sampled from [0, 1].
Fy represents a random flip along the y-axis and is gener-

ated the same way as Fx. R denotes the rotation around the

upright-axis, paramterized by a rotation angle ω sampled

uniformly from [−ϑ,+ϑ]:

R(ω) =





cos(ω) − sin(ω) 0
sin(ω) cos(ω) 0

0 0 1



 . (3)

And S that is uniformly sampled from [a, b] represents the

scaling of the points. Finally, a Ti is randomly sampled and

applied on each input training point cloud xs to the student

network as: x̂s = Ti ∗ xs. Note that the ground truth labels

yLi of the labeled input point cloud xL
i are also transformed

by the corresponding Ti before computing the supervised

loss. Additionally, the output proposals yt from the teacher

network are also transformed by Ti to enable the alignment

between outputs of the two networks.

3.4. Consistency Loss

Unlike the direct computation of consistency between

class predictions of perturbed images in the context of

recognition task [22], the consistency between two sets of

3D object proposals cannot be computed directly. We cir-

cumvent this problem by pairing up the predicted proposals

from the student and teacher networks with an alignment

scheme, followed by applying three consistency losses on

the paired proposals. The objective of the three consistency

losses is to enforce the consensus of object locations, se-

mantic categories and sizes. Let Ĉs = {ĉs} denotes the

centers of the predicted 3D bounding boxes from the stu-

dent network, and Ĉt = {ĉt} denotes those from the teacher

network after transformation. For each ĉt ∈ Ĉt, we do the

alignment by searching for the its nearest neighbor in Ĉs

based on the minimum Euclidean distance between the cen-

ters of the bounding boxes. We further use ĈA
s to denote

the elements from Ĉs that are aligned with each element in

Ĉt. More formally,

ĈA
s = {· · · , ĉAsj , · · · } :

ĉAsj = argmin
ĉs

∥

∥ĉs − ĉtj
∥

∥

2
, ∀ĉs ∈ Ĉs. (4)

Similarly, we can also collect ĈA
t with elements from Ĉt

that are aligned with each element in Ĉs. It is important to

note that the alignments ĈA
s and ĈA

t are not bijective, hence

ĈA
s 6= ĈA

t . Intuitively, the alignment errors, i.e., the total

distance between all corresponding elements in ĈA
s ↔ Ĉt

and ĈA
t ↔ Ĉs, should be zero when the bounding boxes

predicted by the teacher and student networks are consis-

tent. Thus, we propose the center-aware consistency loss:

Lcenter =

∑

ĉs
‖ĉs − ĉAt ‖2 +

∑

ĉt
‖ĉt − ĉAs ‖2

|Ĉs|+ |Ĉt|
, (5)

to minimize the alignment errors between the teacher and

student network.

In addition to center consistency, we also consider two

other properties of the 3D proposals: semantic class and

size to enforce the consistency between two sets of pro-

posals. Following the principle in classic self-ensembling

learning, where the teacher network produces targets for the

student to learn, we only consider a uni-directional align-

ment, i.e., Ĉt to ĈA
s in computing the class- and size-aware

consistency losses. More specifically, let P̂s = {p̂s} and

P̂t = {p̂t} denote the class probabilities of the predicted

objects from the student and the teacher network, respec-

tively. The aligned P̂A
s = {p̂As } is easily obtained based
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on minimum center distance. We define the class-aware

consistency loss as the Kullback-Leibler (KL) divergence

between P̂A
s and P̂t:

Lclass =
1

|P̂t|

∑

DKL(p̂
A
s ‖ p̂t). (6)

In similar vein, the sizes of the bounding boxes predicted

by the student and the teacher networks are denoted as

D̂s = {d̂s} and D̂t = {d̂t}, respectively. We use the same

minimum center distance to get the aligned D̂A
s = {d̂As }.

The size-aware consistency loss can now be computed as

the Mean Square Error (MSE) between D̂A
s and D̂t:

Lsize =
1

|D̂t|

∑

(d̂As − d̂t)
2. (7)

Finally, the total consistency loss is a weighted sum of all

the three consistency terms described earlier:

Lconsistency = λ1Lcenter + λ2Lclass + λ3Lsize, (8)

where λ1, λ2, and λ3 are the weights to control the impor-

tance of the corresponding consistency term.

4. Experiments

4.1. Datasets

We evaluate our SESS on SUN RGB-D and ScanNet for

semi-supervised 3D object detection.

SUN RGB-D [19] is an indoor benchmark dataset for 3D

object detection. It contains 10,335 single-view RGB-D im-

ages, which are officially split into 5,285 training samples

and 5,050 validation samples, where 3D bounding box an-

notations for hundreds of object classes are available. Fol-

lowed the standard evaluation protocol [5, 11, 12, 15, 21],

we perform evaluation on the 10 most common categories

for comparing with the previous methods. By using the pro-

vided camera parameters, the depth images are converted to

point clouds as our inputs.

ScanNetV2 [2] contains 1,513 reconstructed meshes

from 707 unique indoor scenes, which are officially split

into 1,201 training samples and 312 validation samples.

Each scene is well annotated with semantic segmentation

masks. Since there is no existing amodal or orientated 3D

bounding box in ScanNetV2 dataset, we derive the axis-

aligned bounding boxes from the point-level labeling as

in [4, 11]. We adopt the same 18 object classes out of the

21 semantic classes as proposed in [4, 11]. The input point

clouds are generated by sampling vertices from meshes.

For both datasets, we evaluate on different proportions

of labeled data randomly sampled from all the training data.

We ensure that all classes are present, or otherwise we re-

sample until all the K classes are covered in the labeled set.

We keep the remaining data as unlabeled data for training

in our semi-supervised framework.

4.2. Implementation Details

Framework Details. We feed training batches of point

clouds with 5,000 points to our framework. To construct

a batch, we randomly sample Bl labeled samples from PL

and Bu unlabeled samples from PU . In the experiments,

Bl is set to 2 and Bu to 8. During the perturbation step, the

number of randomly sub-sampled points is 4,000; the ϑ is

set to 30◦ on SUN RGB-D and 5◦ on ScanNetV2; the ran-

dom scale range is bounded by a = 0.85 and b = 1.15. The

weights in the consistency loss function are set as λ1 = 1,

λ1 = 2, λ3 = 1. As suggested in [22], we ramp up the

coefficient of consistency cost from 0 to its maximum value

of 10 during the first 30 epochs, using a sigmoid-shaped

function e−5(1−T )2 , where T increases linearly from 0 to 1

during the ramp-up period. In terms of EMA decay α, we

set α = 0.99 during the ramp-up period, and α = 0.999 for

the rest of the training, following [22].

Training. We adopt the exact network structure of

VoteNet [11] as the structure of our student and teacher net-

work. We pre-train VoteNet with all the available labeled

samples. We then initialize the student and teacher net-

works with the pre-trained weights, and train the student

network on both the labeled and unlabeled data by mini-

mizing the supervised loss as well as consistency loss. The

student network is trained by an ADAM optimizer with an

initial learning rate of 0.001. The learning rate is decayed

by 0.1 at the 80th epoch. In general, the model converges at

around 100 epochs. The number of generated 3D proposals

is 128.

Inference. During inference, we forward the point cloud

of a scene to the student network2 to generate the proposals.

Following the same protocol as described in [11], we post-

process those predicted proposals by a 3D NMS module

with an 3D Intersection-over-Union(IoU) threshold of 0.25.

For the evaluation metric, we adopt the widely used mean

average precision (mAP). By default, mAP@0.25 (3D IoU

threshold 0.25) is reported in the following experiments.

4.3. Comparison with Fully­supervised Methods

Baselines. To the best of our knowledge, there are no

other 3D object detection approaches sharing the same

semi-supervised setting as us. Hence, we compare

our semi-supervised SESS to the state-of-the-art fully-

supervised 3D object detection method, VoteNet [11],

which can be considered as an upper bound of our semi-

supervised method since we share the same network back-

bone. By drawing varying ratios of labeled data out of the

2Note that the teacher network can also be used to detect objects. In

the experiments, we find the student and the teacher network give similar

performance.
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Table 1: Comparison with VoteNet on SUN RGB-D val set and ScanNetV2 val set with varying ratios of labeled data. mAP@0.25 are

reported as mean±standard deviation, based on 3 runs with random sampling. And the improvement (Improv.) is computed based on the

mean performances over 3 runs. Note that our SESS is initialized by the VoteNet weights pre-trained on the corresponding labeled data.

Dataset Model 10% 20% 30% 40% 50% 70% 100%

SUNRGB-D
VoteNet [11] 34.43±1.07 41.13±0.36 47.70±0.17 50.77±0.19 52.5±0.19 56.13±0.18 57.7

SESS 42.87±1.01 47.87±0.48 53.17±0.63 54.73±0.26 56.37±0.22 58.97±0.17 61.1

Improv.(%) 24.51↑ 16.39↑ 11.47↑ 7.80↑ 7.37↑ 5.06↑ 5.89↑

ScanNetV2
VoteNet [11] 30.97±0.79 41.60±0.46 45.57±0.38 49.2±0.33 52.57±0.07 54.97±0.07 58.6

SESS 39.67±0.91 47.93±0.39 52.20±0.09 54.93±0.27 57.77±0.41 59.20±0.08 62.1

Improv.(%) 28.09↑ 15.22↑ 14.55 ↑ 11.64 ↑ 9.89 ↑ 7.70 ↑ 5.97↑

Table 2: Comparison with fully-supervised methods on SUN

RGB-D and ScanNetV2 val sets with 100% training labels.

Method SUN RGB-D ScanNetV2

DSS [20] 42.1 15.2

COG [15] 47.6 –

2D-driven [5] 45.1 –

F-PointNet [12] 54.0 19.8

GSPN [5] – 30.6

3D-SIS [4] – 40.2

VoteNet [11] 57.7 58.6

SESS 61.1 62.1

entire training set, we train VoteNet with the available la-

beled data in a fully-supervised way, and SESS with the

available labeled data as well as the remaining unlabeled

data in a semi-supervised way. Additionally, we also eval-

uate our semi-supervised SESS based on a wide-ranging

comparison with existing fully-supervised 3D object detec-

tion methods. Deep Sliding Shapes (DSS) [20] and Cloud

of gradients (COG) [15] are both sliding window based

methods, where DSS is a 3D extension of Faster R-CNN

pipeline [14], and COG designs a 3D HoG-like feature to

model the 3D geometry and appearance. 2D-driven [5] and

F-PointNet [12] both depend on 2D detection in associated

RGB images to reduce the search space of 3D localization.

GSPN [5] and 3D-SIS [4] both target on 3D instance seg-

mentation task but incorporate 3D object detection as an

auxiliary task. Note that all the aforementioned methods use

both point clouds and RGB images as inputs except VoteNet

and our SESS that only require point clouds.

Results. Table 1 lists the comparison results against

VoteNet under different ratios of labeled data on the two

datasets, respectively. SESS significantly outperforms

VoteNet under each ratio setting. The improvements verify

the effectiveness of our proposed semi-supervised frame-

work. On both datasets, as the proportion of labeled sam-

ples decreases, the performance gap between our SESS and

the fully-supervised VoteNet becomes larger. Given 10% la-

beled data, our SESS gains around 24.51% and 28.09% im-

Table 3: Transductive leaning on SUN RGB-D and ScanNetV2

unlabeled training sets, compared with fully-supervised VoteNet.

The percentage indicates the ratio of labeled data for training.

Dataset Model 10% 20% 30% 40% 50% 70%

SUNRGB-D
VoteNet 33.5 39.8 47.5 49.7 51.6 55.2

SESS 40.7 46.1 53.3 54.3 55.1 59.0

ScanNetV2
VoteNet 37.8 47.7 52.1 56.9 61.2 64.3

SESS 46.7 55.4 59.5 63.9 67.5 69.6

provement over VoteNet on SUN RGB-D and ScanNetV2,

respectively. This indicates that our framework is able to

learn knowledge from unlabeled data, and our benefit is

larger when the number of labeled data is scarce.

It is interesting to see that by using only 50% labeled

samples, our SESS achieves close to the upper-bound per-

formance obtained by the fully-supervised VoteNet with

100% labeled samples on both datasets. Furthermore, it is

worth pointing out that when given all the labeled training

data, our SESS is able to further improve the performance

beyond the upper-bound performance of VoteNet. We at-

tribute the outperformance of SESS to its consistency reg-

ularization mechanism, where the 3D detector is trained to

be robust to various perturbations, and the proposed three

consistency losses that encode both geometry and semantic

information guide the 3D detector towards producing more

accurate predictions. This further indicates that our con-

sistency losses are complementary to supervised loss, and

our framework might be integrated with any supervised 3D

object detector to enhance the detection accuracy.

In Table 2, we further list the performance comparison

between SESS and various fully-supervised methods on the

two datasets, by using all the training samples.

4.4. Transductive Semi­supervised Learning

Generally, semi-supervised learning may refer to either

inductive learning or transductive learning. In inductive

learning, the goal is to generalize correct labels for new un-

seen data. In transductive learning, the goal is infer the

labels restricted to the given unlabeled data. Our previ-

ous experiments conducted on unseen validation set can
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Figure 3: Effects of different perturbations.

be considered as inductive learning. In Table 3 we show

that our SESS is also effective in transductive learning on

both datasets. Our SESS consistently outperforms the fully-

supervised VoteNet under different proportions of labeled

samples. This demonstrates that our proposed SESS is a

general framework that is not specific to inductive or trans-

ductive solution.

4.5. Ablation Studies

In this section, we explore the effects of perturbations

and consistency losses. The training of ablation experi-

ments is conducted on SUN RGB-D with 10% labeled data

and ScanNetV2 with of 30% labeled data. The evaluation

is on the corresponding validation set.

Perturbations. We study the effect of each perturbation

by removing it from the framework, and report the perfor-

mance after the removal. We also evaluate an extreme case

that removes the perturbation scheme altogether. Figure 3

illustrates the resultant performances. Obviously, the per-

formance drops greatly on both datasets when the entire per-

turbation scheme is removed. The effect may vary between

the datasets for each individual perturbation. For example,

the rotating perturbation contributes less to performance on

ScanNet than SUN RGBD, as the bounding boxes of ob-

jects in ScanNet are axis-aligned. The scaling perturbation

gives less improvement on SUN RGB-D than that on Scan-

Net. We suspect that this is because the partial scenes in

SUN RGB-D are all with similar scales and thus are less

sensitive to scaling perturbation. In contrast, the scales of

the scenes in ScanNet are quite diverse.

Consistency Losses. We further investigate the effects of

our three consistency losses by experimenting with different

combinations. The comparison is reported in Table 4. From

Table 4: Ablation study on consistency losses.

center class size SUN RGB-D ScanNetV2

✓ ✗ ✗ 38.2 50.0

✗ ✓ ✗ 39.2 50.2

✗ ✗ ✓ 38.1 49.2

✗ ✓ ✓ 40.3 50.7

✓ ✗ ✓ 38.9 50.5

✓ ✓ ✗ 40.0 51.5

✓ ✓ ✓ 40.7 52.0

the perspective of individual consistency loss, the center-

aware and class-aware consistency losses contribute more

than the size-aware consistency loss. However, the combi-

nation of center-aware or class-aware with size-aware con-

sistency loss helps to improve the performance to some ex-

tent. Finally, the integration of the three consistency losses

gives us the best performance on both datasets. It indicates

that the requirement of representing the predicted bounding

boxes with correct geometries (i.e. center, size) as well as

semantics (i.e. class) regularizes the model towards a better

performance.

4.6. Qualitative Results and Analysis

Figure 4 and Figure 5 show the visualizations of the pre-

dictions by VoteNet and SESS with 30% labeled training

data and 100% labeled training data on the ScanNet and

SUN RGB-D scenes, respectively. As seen in Figure 4,

the partial scene obtained by single-view scanning in SUN

RGB-D is very challenging, where some objects are partly

visible but annotated with amodal ground-truth bounding

boxes (e.g. the “sofa” in Figure 4). Surprisingly, both our

method and the strongly supervised VoteNet successfully

detect the target objects in such a challenging scene. Sim-

ilar to the strongly supervised VoteNet, our SESS is able

to detect more objects than those provided by the ground-

truth annotations, such as the partial table in front of the

sofa and the heavily occluded chairs behind the sofa. Our

SESS gives more accurate predictions than VoteNet in terms

of unannotated objects with 30% labeled data. We attribute

this to the exploitation of unlabeled data in our proposal ap-

proach. Our SESS detects more unannotated objects when

100% labeled data is used in training, and the predicted 3D

bounding boxes are consistent with human perception.

In contrast to the partial scenes in SUN RGB-D, the

scenes in ScanNet are more complete and include larger ar-

eas with cluttered objects. An example is shown in Figure

5, this scene contains 7 tables and 27 chairs. Our SESS

correctly recognizes the 7 tables and 26 chairs with 30% la-

beled data, while the strongly supervised VoteNet only de-

tects 6 tables and 24 chairs correctly. We argue that the

proposed consistency losses, which guide the model with

encoded geometric and semantic information, contribute to

the better localization of the 3D bounding boxes. All 34 ob-
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Figure 4: Qualitative comparison between the fully-supervised VoteNet and the proposed SESS on SUN RGB-D val set.

Ground	truth

VoteNet (30%	labels) VoteNet (100%	labels)
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Figure 5: Qualitative comparison between the fully-supervised VoteNet and the proposed SESS on ScanNetV2 val set.

jects are completely detected with precise bounding boxes

when our model is trained with 100% labeled data.

5. Conclusion

In this paper, we propose SESS, a novel self-ensembling

semi-supervised point cloud-based 3D object detection

framework. It does not require a large amount of strong

labels that are often difficult to obtain. Our SESS follows

the Mean Teacher paradigm, where we design a perturba-

tion scheme specific to point-based data and three consis-

tency losses that are able to force the network to generate

more accuracy detections. The experimental results on two

real-world datasets validate the effectiveness and advantage

of our SESS. And we experimentally show that our method

is a general framework that can be applied in both inductive

and transductive semi-supervised 3D object detection.
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