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Abstract

In this work, we tackle the essential problem of scale in-

consistency for self-supervised joint depth-pose learning.

Most existing methods assume that a consistent scale of

depth and pose can be learned across all input samples,

which makes the learning problem harder, resulting in de-

graded performance and limited generalization in indoor

environments and long-sequence visual odometry applica-

tion. To address this issue, we propose a novel system that

explicitly disentangles scale from the network estimation.

Instead of relying on PoseNet architecture, our method re-

covers relative pose by directly solving fundamental matrix

from dense optical flow correspondence and makes use of

a two-view triangulation module to recover an up-to-scale

3D structure. Then, we align the scale of the depth pre-

diction with the triangulated point cloud and use the trans-

formed depth map for depth error computation and dense

reprojection check. Our whole system can be jointly trained

end-to-end. Extensive experiments show that our system not

only reaches state-of-the-art performance on KITTI depth

and flow estimation, but also significantly improves the

generalization ability of existing self-supervised depth-pose

learning methods under a variety of challenging scenarios,

and achieves state-of-the-art results among self-supervised

learning-based methods on KITTI Odometry and NYUv2

dataset. Furthermore, we present some interesting findings

on the limitation of PoseNet-based relative pose estimation

methods in terms of generalization ability. Code is avail-

able at https://github.com/B1ueber2y/TrianFlow.

1. Introduction

Reconstructing the underlying 3D scenes from a collec-

tion of video frames or multi-view images has been a long-

standing fundamental topic named structure-from-motion

(SfM), which serves as an essential module to many real-

world applications such as autonomous vehicles, robotics,

augmented reality, etc. While traditional methods are built
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Figure 1. Visual odometry results on sampled sequence 09 and 10

from KITTI Odometry dataset. We sample the original sequences

with large stride (stride=3) to simulate fast camera ego-motion

that is unseen during training. Surprisingly, all tested PoseNet-

based methods get similar failure on trajectory estimation under

this challenging scenario. Our system significantly improves the

generalization ability and robustness and still works reasonably

well on both sequences. See more discussions in Sec 4.4.

on the golden rule of feature correspondence and multi-view

geometry, a recent trend of deep learning based methods

[42, 15, 66] try to jointly learn the prediction of monocular

depth and ego-motion in a self-supervised manner, aiming

to make use of the great learning ability of deep networks to

learn geometric priors from large amount of training data.

The key to those self-supervised learning methods is to

build a task consistency for training separated CNN net-

works, where depth and pose predictions are jointly con-

strained by depth reprojection and image reconstruction

error. While achieving fairly good results, most exist-

ing methods assume that a consistent scale of CNN-based

monocular depth prediction and relative pose estimation

can be learned across all input samples, since relative pose

estimation inherently has scale ambiguity. Although sev-

eral recent proposals manage to mitigate this scale prob-

lem [2, 12], this strong hypothesis still makes the learn-

ing problem difficult and leads to severely degraded per-

formance, especially in long-sequence visual odometry ap-

plications and indoor environments, where the changes of

relative pose across sequences are significantly remarkable.
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Motivated by those observations, we propose a new self-

supervised depth-pose learning system which explicitly dis-

entangles scale from the joint estimation of the depth and

relative pose. Instead of using a CNN-based camera pose

prediction module (e.g. PoseNet), we directly solve the fun-

damental matrix from optical flow correspondences and im-

plement a differentiable two-view triangulation module to

locally recover an up-to-scale 3D structure. This triangu-

lated point cloud is later used to align the predicted depth

map via a scale transformation for depth error computation

and reprojection consistency check.

Our system essentially resolves the scale inconsistency

problem in design. With two-view triangulation and ex-

plicit scale-aware depth adaptation, the scale of the pre-

dicted depth always matches that of the estimated pose, en-

abling us to remove the scale ambiguity for joint depth-pose

learning. Likewise, we borrow the advantage of traditional

two-view geometry to acquire more direct, accurate and ro-

bust depth supervision in a self-supervised end-to-end man-

ner, where the depth and flow prediction can benefit from

each other. Moreover, because our relative pose is directly

solved from the optical flow, we simplify the learning pro-

cess and do not require the knowledge of correspondence

to be learned from the PoseNet architecture, enabling our

system to have better generalization ability in challenging

scenarios. See an example in Figure 1.

Experiments show that our unified system significantly

improves the robustness of self-supervised learning meth-

ods in challenging scenarios such as long video sequences,

unseen camera ego-motions, and indoor environments.

Specifically, our proposed method achieves significant per-

formance gain on NYU v2 dataset and KITTI Odometry

over existing self-supervised learning-based methods, and

maintains state-of-the-art performance on KITTI depth and

flow estimation. We further test our framework on TUM-

RGBD dataset and again demonstrate its much promising

generalization ability compared to baselines.

2. Related Work

Monocular Depth Estimation. Recovering 3D depth

from a single monocular image is a fundamental problem

in computer vision. Early methods [45, 46] use feature vec-

tors along with a probabilistic model to provide monocu-

lar clues. Later, with the advent of deep networks, a vari-

ety of systems [8, 10, 42] are proposed to learn monocu-

lar depth estimation from groundtruth depth maps in a su-

pervised manner. To resolve the data deficiency problem,

[36] uses synthetic data to help the disparity training, and

several works [30, 26, 29, 27] leverage standard structure-

from-motion (SfM) pipeline [47, 48] to generate a psuedo-

groundtruth depth map by reprojecting the reconstructed

3D structure. Recently, a bunch of works [11, 15, 66] on

self-supervised learning are proposed to jointly estimate

other geometric entities that help depth estimation learn-

ing via photometric reprojection error. However, although

some recent works [54, 12] try to address the scale ambigu-

ity for monocular depth estimation with either normaliza-

tion or affine adaptation, self-supervised methods still suf-

fer from the problem of scale inconsistency when applied to

challenging scenarios. Our work combines the advantages

of SfM-based unsupervised methods and self-supervised

learning methods, essentially disentangles scale from our

learning process and benefits from the more accurate and

robust triangulated structure with two-view geometry.

Self-Supervised Depth-Pose Learning. Struction-from-

motion (SfM) is a golden standard for depth reconstruc-

tion and camera trajectory recovery from videos and im-

age collections. Recently many works [53, 3, 60, 52] try to

combine neural networks into SfM pipeline to make use of

the learned geometric priors from training data. Building

on several unsupervised methods [11, 15], Zhou et al. [66]

first proposes a joint unsupervised learning framework of

depth and camera ego-motion from monocular videos. The

core idea is to use photometric error as supervision signal

to jointly train depth and ego-motion networks. Along this

line, several methods [61, 67, 35, 2, 41, 34, 5, 6] further

improve the performance by incorporating better training

strategies and additional constraints including ICP regular-

ization [35], collaborative competition [41], dense online

bundle adjustment [5, 6], etc. Most related to us, Bian et

al. [2] introduce geometry consistency loss to enforce the

scale-consistent depth learning. Different from them, our

method essentially avoids the scale inconsistency in deign

by directly solving relative pose from optical flow corre-

spondence. Our system designs and findings are orthogonal

to existing depth-pose learning works, significantly improv-

ing those methods on both accuracy and generalization.

Two-view Geometry. Establishing pixel-wise correspon-

dences between two images is a long-standing visual prob-

lem. Traditional methods utilize hand-crafted descriptors

[32, 1, 43] to build rough correspondence for the sub-

sequent fundamental matrix estimation. Recently, build-

ing on classic works of optical flow [21, 33], researchers

[7, 22, 51] find deep neural networks powerful on feature

extraction and dense correspondence estimation between

adjacent frames. Likewise, several self-supervised methods

[23, 37, 31] are proposed to supervise optical flow training

with photometric consistency.

Another line of research is to combine learning-based

methods with the fundamental matrix estimation after es-

tablishing the correspondence. While some researches

[4, 40] focus on making RANSAC [9] differentiable, an-

other alternative is to use an end-to-end pose estimation

network [24]. However, some recent findings [44, 65] on

image-based localization show that PoseNet design [24] can
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Figure 2. System overview. DepthNet takes each input image and predicts monocular depths respectively. FlowNet take image pairs as

input and predict optical flows. The relative pose is recovered by sampling correspondences, solving the fundamental matrix, and cheirality

condition check. Accurate pixel matches are re-sampled and used for triangulation. Depth predictions are aligned according to sparse

triangulation depth, and then losses are measured respectively, to supervise DepthNet and FlowNet jointly.

degrade the generalization ability compared to geometry-

based methods. Also, the inherent problem of scale ambi-

guity for pose estimation makes it hard to decouple with

depth scale during joint training. In our work, we show that

by building on conventional two-view geometry, our optical

flow estimation module is able to accurately recover relative

poses and can benefit from the joint depth-pose learning.

3. Method

3.1. Motivation and System Overview

The central idea of existing self-supervised depth-pose

learning methods is to learn two separated networks on the

estimation of monocular depth and relative pose by enforc-

ing geometric constraints on image pairs. Specifically, the

predicted depth is reprojected onto another image plane us-

ing the predicted relative camera pose and then photometric

error is measured. However, this class of methods assume a

consistent scale of depth and pose across all images, which

could make the learning problem difficult and lead to a scale

drift when applied to visual odometry applications.

Some recent proposals [54, 2] introduce additional

consistency constraints to mitigate this scale problem.

Nonetheless, the scale-inconsistent issue naturally exists

because the scales of the estimated depth and pose from

neural networks are hard to measure. Also, the photometric

error on the image plane supervises the depth in an implicit

manner, which could suffer from data noise when large tex-

tureless regions exist. Furthermore, similar to two recent

findings [44, 65] that CNN-based absolute pose estimation

is difficult to generalize beyond image retrieval, the perfor-

mance of the CNN-based ego-motion estimation also sig-

nificantly degrades when applied to challenging scenarios.

To address the above challenges, we propose a novel sys-

tem that explicitly disentangles scale consistency at both

training and inference. The overall pipeline of our method

is shown in Figure 2. Instead of relying on CNN-based rel-

ative pose estimation, we first predict optical flow and solve

the fundamental matrix from the dense flow correspon-

dence, thereby recovering relative camera pose. Then, we

sample over the inlier regions and use a differentiable trian-

gulation module to reconstruct an up-to-scale 3D structure.

Finally, depth error is directly computed after a scale adap-

tation from the predicted depth to the triangulated structure

and reprojection error on depth and flow is measured to fur-

ther enforce end-to-end joint training. Our training objec-

tive L is formulated as follows:

L = w1Lf + w2Ld + w3Lp + w4Ls. (1)

The Lf denotes the unsupervised loss on optical flow,

where we follow the photometric error design (pixel +

SSIM [56] + smooth) on PWC-Net [51]. Occlusion mask

Mo is derived from optical flow by following [55]. We also

add a forward-backforward consistency [61] to generate a

score map Ms for subsequent fundamental matrix estima-

tion. Ld is the loss between triangulated depth and predicted

depth. Lp is the reprojection error for image pairs, which

consists of two parts, depth map reconstruction error and

flow error between optical flow and rigid flow generated by

depth reprojection. Ls is the depth smoothness loss, which

follows the same formulation in [2].

In the following parts, we first describe how we recover

relative pose via fundamental matrix from optical flow.

Then, we show how to use the recovered pose to build up

self supervision geometrically without scale ambiguity. Fi-

nally, a brief description is given on the inference pipeline

of our system when applied to visual odometry applications.

3.2. Fundamental Matrix from Correspondence

We recover camera pose from optical flow correspon-

dence via traditional fundamental matrix computation algo-

rithm. Optical flow offers correspondence for every pixel,
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while some of them are noisy and thus not suitable for solv-

ing the fundamental matrix. We first select reliable cor-

respondences using the occlusion mask Mo and forward-

backward flow consistency score map Ms, which are both

generated from our flow network. Specifically, we sample

the correspondences that locate in non-occluded regions and

have top 20% forward-backward scores. Then we randomly

acquire 6k samples out of the selected correspondences and

solve the fundamental matrix F via the simple normalized

8-point algorithm [18] in RANSAC [9] loop. Fundamental

matrix is then decomposed into camera relative pose, which

is denoted as [R, t]. Note that there are 4 possible solutions

for [R, t] and we adopt cheirality condition check, mean-

ing that the triangulated 3D points must be in front of both

cameras, to find the best one solution. In this way, our pre-

dicted camera pose fully depends on the optical flow net-

work, which can better generalize across image sequences

and under challenging scenarios.

3.3. Two­view Triangulation as Depth Supervision

Recovering the relative camera pose with fundamental

matrix estimation from optical flow formulates an easier

learning problem and improves the generalization, but can-

not enforce scale-consistent prediction on its own. To fol-

low up with this design, we propose to explicitly align the

scale of depth and pose. Intuitively two reasonable solutions

on scale optimization exist: 1) aligning depth with pose 2)

aligning pose with depth. We adopt the former one as it can

be formulated as a linear problem using two-view triangu-

lation [19].

Again, instead of using all pixel matches to perform

dense triangulation, we first select top accurate correspon-

dences. Specifically, we generate an inlier score map Mr by

computing the distance map Depi from each pixel to its cor-

responding epipolar line, which is helpful for masking out

bad matches and non-rigid regions, such as moving objects.

Then this inlier score map Mr is combined with occlusion

mask Mo, optical flow forward-backward score Ms, to sam-

ple rigid, non-occluded and accurate correspondences. Here

we also randomly acquire 6k samples out of the top 20%

correspondence and perform two-view triangulation to re-

construct an up-to-scale 3D structure. We adopt the mid-

point triangulation as it has a linear and robust solution. Its

formulation is as follows:

x∗ = argmin
x

[d(L1, x)]
2 + [d(L2, x)]

2, (2)

where L1 and L2 denote two camera rays generated from

optical flow correspondence. This problem can be directly

solved analytically and the solver is naturally differentiable,

enabling our system to perform end-to-end joint training.

The derivation of its analytical solution is included in sup-

plementary materials. We use the triangulated 3D structure

Figure 3. Dense triangulation examples. While most of the tri-

angulated matches are pretty good, the depth values around oc-

cluded areas and epipole regions are noisy. In these two examples,

epipoles locate near the image center and the nearby triangulated

depths are negative or very close to zero. Thus we only use sam-

pled sparse accurate triangulation depth as supervision.

as the depth supervision. To mitigate the numerical issue,

such as triangulation of matches around epipoles, we filter

the correspondence online with respect to the angle of the

camera rays. Also, we filter the triangulated samples with

negative or out-of-bound depth reprojection. Figure 3 visu-

alizes samples for the depth reprojection of the dense trian-

gulated structure. The quality of the depth is much promis-

ing and feasible to be used as a psuedo depth groundtruth

signal to guide the network learning. This design shares

similar spirits with many recent methods [30, 26, 29, 27]

on supervising the monocular depth estimation with offline

SfM inference where they also use the reconstructed struc-

ture as the psuedo groundtruth. Compared to those works,

our online robust triangulation module explicitly handles

occlusion, moving objects and bad matches, and is success-

fully integrated into the joint training system where corre-

spondence generation and depth prediction could benefit to-

gether.

3.4. Scale­invariant Design

As aforementioned, we can resolve the scale-

inconsistent problem by aligning predicted depth with

the triangulated structure. Specifically, we align the

monocular depth estimation D with a single scale transfor-

mation s to minimize the error between the transformed

depth Dt = sD and the psuedo groundtruth depth Dtri

from triangulation in Eq. (3). Then, the minimized error is

used as the depth loss for back-propagation. This online

fitting technique was also introduced in a recent work [12].

Ld = (
Dtri −Dt

Dtri

)2 (3)

The transformed depth is explicitly aligned to the tri-

angulated 3D structure, whose scale is decided by relative

pose scale, thus scale inconsistency is essentially disentan-

gled from the system. Also, the transformed depth can be

further used for computing the dense reprojection error Lp.

This error is formulated in Eq. (4):

Lp = w31Lpf + w32Lpd, (4)
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Given an image pair (Ia, Ib), scale-transformed depth es-

timations (Da, Db), camera intrinsic parameter K, and re-

covered relative pose Tab from optical flow Fab, loss Lpf is

calculated as follows, which measures the 2D error between

optical flow and rigid flow generated by depth reprojection.

pbd = φ(K[TabDa(pa)K
−1(h(pa)]))

pbf = pa + Fab(pa)

Lpf =
1

|Mr|

∑

pa

Mr(pa)|pbd − pbf |+ |Depi|
(5)

where pa is the pixel coordinate (x, y) in Ia, and h(pa)
indicates the homogeneous coordinates of pa. Operator

φ([x, y, z]) = [x/z, y/z] gives pixel coordinates. As men-

tioned in Sec 3.3, Depi is the distance map of each pixel

to its corresponding epipolar line and Mr is the inlier score

map. |De| serves as a geometric regularization term to help

improve the correspondences. |Mr| =
∑

pa

Mr(pa) is for

normalization. Depth reprojection error Lpd is defined as:

Lpd =
1

|MoMr|

∑

pa

Mo(pa)Mr(pa)|1−
Da

b (pbd)

Ds
b(pbd)

| (6)

where Da
b is the reprojected depth map by Da and Tab. Ds

b

is the interpolated depth map of Db to align with reprojected

pixel coordinates pbd, which is defined in Eq. (5). Mo is the

occlusion mask from optical flow.

3.5. Inference Pipeline on Video Sequences

At inference step, we use the same strategy for relative

pose estimation via fundamental matrix estimation from op-

tical flow correspondence. Then, the scale of the triangu-

lated structure is aligned as the same with that of monocular

depth estimation. When the optical flow magnitude is too

small, we use perspective-n-point (PnP) method over the

predicted depth directly. In this way, we essentially avoid

the scale inconsistency between depth and pose during in-

ference. A recent paper [63] employs similar visual odome-

try inference strategies to utilize neural network predictions.

However, their depth and flow network are pre-trained sep-

arately using PoseNet architecture, while our method builds

a robust joint learning system to learn better depth, pose and

flow predictions in a self-supervised manner.

4. Experiments

4.1. Implementation Details

Dataset. We first validate our design on KITTI dataset [13],

then conduct extensive experiments on KITTI Odometry,

NYUv2 [49] and TUM-RGBD [50] datasets to demonstrate

the robustness and generalization ability of our proposed

system. For original KITTI dataset, we use Eigen et al.’s

split [8] of the raw dataset for training, which is consistent

with related works [66, 41, 6, 14]. The images are resized

to 832×256. We evaluate the depth network on the Eigen

et al.’s testing split, and the optical flow network on KITTI

2015 training set. For KITTI Odometry dataset, we follow

the standard setting [6, 66, 61] of using sequences 00-08

for training and 09-10 for testing. Since the camera ego-

motions in KITTI odometry dataset are relatively regular

and steady, we sample the original test sequences to shorter

versions, mimicking fast camera motions, for testing the

generalization ability of networks on unseen data. NYUv2

[49] and TUM-RGBD [50] are two challenging indoor

datasets which consist of large textureless surfaces and

more complex camera ego-motions.

Network Architectures. Since our work focuses on an

improved self-supervised depth-pose learning scheme, we

adopt similar network designs that align with existing self-

supervised learning methods. For the depth network, we

use the same architecture as [14] which adopts ResNet18

[20] as encoder and DispNet [15] as decoder. The optical

flow network is based on PWCNet [51] and handles occlu-

sion using the method described in [55]. Camera pose is

calculated from filtered optical flow correspondences in a

non-parametric manner.

Training. Our system is implemented in PyTorch [39]. We

use Adam [25] optimizer and set learning rate to 10−4 and

batch size to 8. The whole training schedule consists of

three stages. Firstly, we only train optical flow network in

an unsupervised manner via image reconstruction loss. Af-

ter 20 epochs, we freeze optical flow network and train the

depth network for another 20 epochs. Finally, we jointly

train both networks for 10 epochs.

4.2. Conventional KITTI Setting

Monocular Depth Estimation. We report results on

monocular depth estimation on Eigen et al.’s testing split

on KITTI [13] dataset. The results are summarized in Ta-

ble 1. Our method achieves comparable or better perfor-

mance with state-of-the-art methods [14, 16]. The perfor-

mance gain is benefited from our system design, where the

scale is disentangled from training and robust supervision

is acquired from two-view triangulation module. We fur-

ther explore the effects of different loss terms. The perfor-

mance slightly drops without reprojection loss Lp as shown

in Table 1, and the training cannot converge without trian-

gulation supervision loss Ld. Figure 4 shows qualitative

results of our depth prediction. Note that our method is or-

thogonal to many previous works, and could be potentially

incorporated with many advanced techniques such as online

refinement [5, 6], and more effective architecture [17].

Optical Flow Estimation. Table 2 summarizes the results
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Figure 4. Qualitative results on KITTI dataset. Top to bottom: Original image, depth prediction, optical flow prediction and occlusion

mask prediction.

Error Accuracy, δ
Method AbsRel SqRel RMS RMSlog <1.25 <1.252 <1.253

Zhou et al. [66] 0.183 1.595 6.709 0.270 0.734 0.902 0.959

Mahjourian et al. [35] 0.163 1.240 6.220 0.250 0.762 0.916 0.968

Geonet [61] 0.155 1.296 5.857 0.233 0.793 0.931 0.973

DDVO [54] 0.151 1.257 5.583 0.228 0.810 0.936 0.974

DF-Net [67] 0.150 1.124 5.507 0.223 0.806 0.933 0.973

CC [41] 0.140 1.070 5.326 0.217 0.826 0.941 0.975

EPC++ [34] 0.141 1.029 5.350 0.216 0.816 0.941 0.976

Struct2depth (-ref.) [5] 0.141 1.026 5.291 0.215 0.816 0.945 0.979

GLNet (-ref.) [6] 0.135 1.070 5.230 0.210 0.841 0.948 0.980

SC-SfMLearner [2] 0.137 1.089 5.439 0.217 0.830 0.942 0.975

Gordon et al. [16] 0.128 0.959 5.230 0.212 0.845 0.947 0.976

Monodepth2 (w/o pretrain) [14] 0.132 1.044 5.142 0.210 0.845 0.948 0.977

Monodepth2† [14] 0.115 0.882 4.701 0.190 0.879 0.961 0.982

Ours (w/o pretrain and Lp) 0.135 0.932 5.128 0.208 0.830 0.943 0.978

Ours (w/o pretrain) 0.130 0.893 5.062 0.205 0.832 0.949 0.981

Ours† 0.113 0.704 4.581 0.184 0.871 0.961 0.984

Table 1. Quantitative comparison between our proposed system and state-of-the-art depth-pose learning methods (without post-processing)

for monocular depth Estimation on KITTI [13] dataset. † indicates ImageNet pretraining.

of optical flow estimation on KITTI 2015 training set. We

also report the performance of only training our optical flow

network, denoted as FlowNet-only. Results show that the

optical flow module can benefit from joint depth-pose learn-

ing process and therefore outperforms most previous unsu-

pervised flow estimation methods and joint learning meth-

ods. Figure 4 shows some qualitative results.

4.3. Generalization on Long Sequences

We further extend our system for visual odometry appli-

cations. Most of current depth-pose learning methods suf-

fer from error drift when applied on long sequences since

the pose network is trained to predict relative pose in short

snippets. Recently, Bian et al. [2] propose a geometric con-

sistency loss to enforce the long-term consistency of pose

prediction and show better results. We test our system with

their method and other state-of-the-art depth-pose learning

methods on KITTI Odometry datatset. Since monocular

systems lack real world scale factor, we align all the pre-

dicted trajectory to groundtruth by applying 7DoF (scale +

Method Noc All Fl

FlowNetS [22] 8.12 14.19 -

FlowNet2 [51] 4.93 10.06 30.37%

UnFlow [37] - 8.10 23.27%

Back2Future [23] - 7.04 24.21%

Geonet [61] 8.05 10.81 -

DF-Net [67] - 8.98 26.01%

EPC++ [34] - 5.84 -

CC [41] - 5.66 20.93%

GLNet [6] 4.86 8.35 -

Ours (FlowNet-only) 4.96 8.97 25.84%

Ours 3.60 5.72 18.05%

Table 2. Optical flow estimation results. We report the average

end-point-error (EPE) on non-occluded regions and overall re-

gions, and Fl score on KITTI 2015 training set, following [61, 6].

Top 2 rows: supervised methods which are trained on synthetic

data only. Middle 2 rows: unsupervised optical flow learning

methods. Bottom rows: joint depth-pose learning methods.

6DoF) transformation. Table 3 shows the results. Because

our method essentially mitigates the scale drift of existing
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Methods Seq. 09 Seq. 10

terr (%) rerr (◦/100m) terr (%) rerr (◦/100m)

ORB-SLAM2† [38] 9.31 0.26 2.66 0.39

ORB-SLAM2 [38] 2.84 0.25 2.67 0.38

Zhou et al. [66] 11.34 4.08 15.26 4.08

Deep-VO-Feat [62] 9.07 3.80 9.60 3.41

CC [41] 7.71 2.32 9.87 4.47

SC-SfMLearner [2] 7.60 2.19 10.77 4.63

Ours 6.93 0.44 4.66 0.62

Table 3. Visual odometry results on KITTI Odometry dataset.

The average translation and rotation errors are reported. ORB-

SLAM2† indicates that the loop closure is disabled.

depth-pose learning methods with scale inconsistency, we

achieve significant performance improvement over state-of-

the-art depth-pose learning systems. Although our dense

correspondence is learned in an unsupervised manner and

no local BA and mapping are used at inference, we achieve

comparable results with conventional SLAM systems [38].

Figure 5 shows the recovered trajectories on two tested se-

quences respectively.

4.4. Generalization on Unseen Ego­motions

To verify the robustness of our method, we design an

experiment to test visual odometry application with unseen

camera ego-motions. Original sequences in KITTI Odom-

etry dataset are recorded by driving cars with relatively

steady velocity, therefore there are nearly no abrupt mo-

tions. Meanwhile, the data distributions of relative poses on

testing sequences are quite similar to those on training set.

We sample the sequences 09 and 10 with different strides to

mimic the velocity changes of cameras, and directly test our

methods and other depth-pose learning methods, which are

all trained on original KITTI Odometry training split, and

tested on these new sequences. Table 4 shows the results

on sequences 09 and 10 which are sampled with stride 3.

It is clearly shown that our method is robust and general-

ize much better on this unseen data distribution, even com-

pared to ORB-SLAM2 [38], which frequently fails and re-

initializes under fast motion. More surprisingly, as shown

in Figure 1, all existing depth-pose learning methods relying

on PoseNet fail to predict reasonable and consistent poses,

and produce relatively similar trajectories, which drift far

away from the groundtruth trajectory. This might be due to

the fact that CNN-based pose estimation acts more like a

retrieval method and cannot generalize to unseen data. This

interesting finding shares similar spirits with recent works

[44, 65], where the generalization ability of CNN-based ab-

solute pose estimation is studied in depth. With our scale-

agnostic system design and the use of conventional two-

view geometry, we achieve significantly more robust per-

formance on videos with unseen per-frame ego-motions.

4.5. Generalization on Indoor Datasets

To further test our generalization ability, we evaluate our

method on two indoor datasets: NYUv2 [49] and TUM-

Figure 5. Visual odometry results on sequence 09 and 10.

Methods Seq. 09 Seq. 10

terr (%) rerr (◦/100m) terr (%) rerr (◦/100m)

ORB-SLAM2 [38] X X X X

Zhou et al. [66] 49.62 13.69 33.55 16.21

Deep-VO-Feat [62] 41.24 10.80 24.17 11.31

CC [41] 41.99 11.47 30.08 14.68

SC-SfMLearner [2] 52.05 14.39 37.22 18.91

Ours 7.21 0.56 11.43 2.57

Table 4. Visual odometry results on KITTI Odometry dataset with

large sample stride (stride=3). While ORB-SLAM2 is hard to ini-

tialize and keeps losing tracking in this case, our method can pro-

duce fairly good prediction. See Figure 1 for plotted trajectories.

RGBD [50] benchmark. Indoor environments are chal-

lenging due to the existence of large texture-less regions

and much more complex ego-motion (compared to rela-

tively consistent ego-motion on KITTI [13]), making the

training of most existing self-supervised depth-pose learn-

ing method collapse, as shown in Figure 7. We train our

network on NYUv2 raw training set and evaluate the depth

prediction on labeled test set. Training images are resized

to 192×256 by default. Quantitative results are shown in

Table 5. Our method achieves state-of-the-art performance

among unsupervised learning baselines. To further study

the effects on our system design, we introduce two base-

line methods in Table 5: PoseNet baseline is built by sub-

stituting our optical flow and two-view triangulation mod-

ule with a PoseNet-like architecture, where relative pose

is directly predicted with a convolutional neural network,

and PoseNet-Flow baseline uses optical flow as input for

PoseNet branch to predict relative pose. See supplementary

material for more details about these two baselines. Our

proposed system achieves a large performance gain, indicat-

ing the effectiveness and robustness of our system design.

9157



Error Accuracy, δ

Method rel log10 rms <1.25 <1.25
2

<1.25
3

Make3D [46] 0.349 - 1.214 0.447 0.745 0.897

Li et al. [28] 0.232 0.094 0.821 0.621 0.886 0.968

MS-CRF [58] 0.121 0.052 0.586 0.811 0.954 0.987

DORN [10] 0.115 0.051 0.509 0.828 0.965 0.992

Zhou et al. [64] 0.208 0.086 0.712 0.674 0.900 0.968

PoseNet 0.283 0.122 0.867 0.567 0.818 0.912

PoseNet-Flow 0.221 0.091 0.764 0.659 0.883 0.959

Ours 0.201 0.085 0.708 0.687 0.903 0.968

Ours (448×576) 0.189 0.079 0.686 0.701 0.912 0.978

Table 5. Results on NYUv2 depth estimation. Supervised methods

are shown in the first rows. PoseNet indicates replacing flow and

triangulation module with PoseNet in our system. PoseNet-Flow

indicates using optical flow as input for PoseNet.

Figure 6. Visual odometry results on TUM RGBD dataset. Our

proposed system can still work well with large textureless regions

(the 1st and the 3rd cases), complex camera motions (the 2nd case)

and different lighting conditions (the 4th case), demonstrating im-

proved robustness compared to the baseline. Better viewed when

zoomed in.

In addition, we test our method on TUM-RGBD [50]

dataset, which is widely used for evaluating visual odom-

etry and SLAM systems [38, 57]. This dataset is collected

mainly by hand-held cameras in indoor environments, and

consists of various challenging conditions such as extreme

textureless regions, moving objects, and abrupt motions,

etc. We follow the same train/test setting as [59]. Fig-

ure 6 shows four trajectory results. The PoseNet-like base-

line fails to generalize under this setting and produce poor

results. Conventional SLAM system like ORB-SLAM2

works well if there exists rich textures but tends to fail when

large textureless region occurs, such as the first and the third

cases shown in Figure 6. In most cases, thanks to joint dense

correspondence learning, our method can establish accurate

pixel associations to recover camera ego-motions and pro-

duce reasonably well trajectories, again demonstrating our

improved generalization.

4.6. Discussion

Our experiments show that in addition to that our method

maintains on par or even better performance on the widely

tested KITTI benchmark, we achieve significant improve-

ment on robustness and generalization from a variety of dif-

ferent aspects. This gain on generalization comes from our

two novel designs as follows: 1) direct camera ego-motion

prediction from optical flow, and 2) explicit scale align-

Figure 7. Depth estimation results on NYUv2 test data. Top to

bottom: Input image, PoseNet baseline prediction, our prediction

and depth groundtruth. PoseNet baseline fails to generalize for this

indoor environment, which is also reported in [64].

ment between the depth and the triangulated 3D structure.

Our findings suggest that optical flow, which does not suf-

fer from scale ambiguity naturally, is a more robust visual

clue compared to relative pose estimation for deep learning

models, especially under challenging scenarios. Likewise,

explicitly handling the scale of depth and pose is still crucial

for deep learning based visual SLAM. However, our current

system cannot handle multi-view images where the motion

magnitude is beyond the cost volume of optical flow, and

pure rotation cannot be handled online with the two-view

triangulation module.

5. Conclusion

In this paper, we propose a novel system which tackles

the scale inconsistency for self-supervised joint depth-pose

learning, by (1) directly recovering relative pose from opti-

cal flow and (2) explicit scale alignment between depth and

pose via triangulation. Experiments demonstrate that our

method achieves significant improvement on both accuracy

and generalization ability over existing methods. Handling

the above mentioned failure cases, developing general cor-

respondence prediction and integration with back-end opti-

mization could be interesting future directions.
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