
Distribution-induced Bidirectional Generative Adversarial Network for Graph

Representation Learning

Shuai Zheng1,2, Zhenfeng Zhu1,2,∗, Xingxing Zhang1,2, Zhizhe Liu1,2, Jian Cheng3,4, Yao Zhao1,2

1Institute of Information Science, Beijing Jiaotong University, Beijing, China
2Beijing Key Laboratory of Advanced Information Science and Network Technology, Beijing, China

3NLPR, Institute of Automation, Chinese Academy of Sciences, Beijing, China
4University of Chinese Academy of Sciences, Beijing, China

1,2{zs1997,zhfzhu,zhangxing,yzhao}@bjtu.edu.cn, 3,4
jcheng@nlpr.ia.ac.cn

Abstract

Graph representation learning aims to encode all nodes

of a graph into low-dimensional vectors that will serve as

input of many compute vision tasks. However, most existing

algorithms ignore the existence of inherent data distribu-

tion and even noises. This may significantly increase the

phenomenon of over-fitting and deteriorate the testing ac-

curacy. In this paper, we propose a Distribution-induced

Bidirectional Generative Adversarial Network (named D-

BGAN) for graph representation learning. Instead of the

widely used normal distribution assumption, the prior dis-

tribution of latent representation in our DBGAN is estimat-

ed in a structure-aware way, which implicitly bridges the

graph and feature spaces by prototype learning. Thus dis-

criminative and robust representations are generated for al-

l nodes. Furthermore, to improve their generalization a-

bility while preserving representation ability, the sample-

level and distribution-level consistency is well balanced via

a bidirectional adversarial learning framework. An exten-

sive group of experiments are then carefully designed and

presented, demonstrating that our DBGAN obtains remark-

ably more favorable trade-off between representation and

robustness, and meanwhile is dimension-efficient, over cur-

rently available alternatives in various tasks. The source

code is released in https://github.com/SsGood/

DBGAN .

1. Introduction

A graph is a collection of nodes and edges that can be

used to model relationships and processes between data in

a variety of scenarios, such as biomedical networks, cita-

tion networks, and social networks. Therefore, graph anal-

∗Corresponding author.

ysis is a necessary step to explore the internal information

of these networks. However, due to the complex topol-

ogy and high data dimension of graph data, most of the

current machine learning methods for simple sequences or

grids design are not suitable for graph data analysis. As a

general approach to these problems, Graph representation

learning aims to represent sparse raw features of graph n-

odes as compact low-dimensional vectors while preserving

enough information for subsequent downstream tasks, such

as link prediction [6,38], clustering [26,36], and recommen-

dation [30,34]. In recent years, a variety of graph represen-

tation learning methods have been proposed, which can be

broadly summarized into two categories: proximity-based

algorithms and deep learning-based algorithms.

By applying matrix factorization, proximity-based al-

gorithms, such as GraRep [2], HOPE [27], M-NMF [39]

attempt to factorize the graph adjacency matrix to obtain

the node representation. While for probabilistic models,

such as DeepWalk [30], line [33], and node2vec [13], they

learn the node representation with local neighborhood con-

nectivities through randomwalk and various order proximi-

ties. These methods are all focused on preserving the orig-

inal neighborhood relationship in a low dimensional space.

Recent studies have also shown that probabilistic model-

s and matrix factorization-based algorithms are equivalent

and can be implemented by a unified model [31].

Deep learning-based approaches are receiving increasing

attention, most of which use the auto-encoder framework to

capture the latent representation. SDNE [37] and DNGR [3]

use deep auto-encoders to model the positive point-wise

mutual information (PPMI) while preserving the structure

of the graph. The GAE [17] first merges the GCN [16] as an

encoder into the auto-encoder framework to seek the latent

representation by reconstructing the adjacency matrix. In

addition, MGAE [36], GDN [20], and GALA [29] attempt

to preserve node feature in latent representation by building

7224

learnable decoders and encoders on a GAE basis. In fact,

most of the above methods are to reconstruct either the adja-

cency matrix or the node feature, rather than the reconstruc-

tion on both together. However, for good low-dimensional

latent representations, the topology of the graph and the n-

ode feature should be preserved at the same time.

It is worth noting that none of the above methods have

explicitly exploited the latent distribution of the graphical

data, and thus, the distribution consistency across domain-

s(graph space and feature space) cannot be well preserved,

which leads to poor generalization of the representation and

sensitivity to noise. Due to the strong ability of the gen-

erative adversarial network(GAN) [12] for distribution fit-

ting, some works have introduced adversarial learning in-

to the field of graph representation learning to improve the

performance of the learned latent representation. In Graph-

GAN [38] and ProGAN [10], the generated fake node pairs

and node triplets compete with the real data to enhance the

robustness of latent representation. These methods ignore

the global structure and node feature, and fail to preserve

the distributed consistency, resulting in the insufficiency

in generalization ability. Besides, the normal distribution

N(0, 1) has been generally pre-assumed in AIDW [5] and

ARGA [28] to guide the generation of latent representation-

s. However, in most cases, it is not suitable to model the la-

tent distribution of graph data by N(0, 1), and an inaccurate

prior distribution can cause the model to be over-smoothing

or even misleading.

Motivated by the observations mentioned above, we pro-

pose a distribution-induced bidirectional GAN for unsuper-

vised graph representation learning, named as DBGAN. To

enhance the generalization ability of the representation, dif-

ferent from unidirectional mapping of data to representation

in ARGA [28] and AIDW [5], we not only apply adversar-

ial learning to the encoder but also construct a generator

for modeling the mapping of latent representation to graph

data, establishing a bidirectional mapping between the two

spaces, thus, the distribution consistency and sample consis-

tency of the node representations are preserved in the latent

space. Furthermore, to preserve the structural consisten-

cy of graph data, we perform prior distribution estimation

in latent space using the learned cross-domain prototype-

s. This will facilitate the robustness of node representations

and alleviate the over-smoothing problem caused by normal

distribution assumption like in ARGA [28]. We evaluate the

effectiveness of latent representations learned by GBGAN

on both link prediction and node clustering tasks. The con-

tributions are highlighted in the following aspects:

• We propose a Distribution-induced Bidirectional

Generative Adversarial Network (DBGAN), for graph

representation learning with a dimension-efficient

property. To the best of our knowledge, it is the first

work to consider prior distribution estimation in ad-

Figure 1. architecture of ARGA [28] and AIDW [5]. A and Ã rep-

resent the adjacency matrix and reconstructed adjacency matrix,

respectively. X denotes the node feature matrix. ”+” denotes the

real samples and ”− ” denotes the fake samples.

versarial learning.

• To improve generalization ability while preserv-

ing representation ability, the sample-level and

distribution-level consistency are well balanced via

bidirectional adversarial learning.

• Unlike the widely used normal distribution assump-

tion, we innovatively estimate structure-aware prior

distribution of latent representation by bridging the

graph and feature spaces with learned prototypes, thus

generating robust and discriminative representations.

• Significant improvements over currently available al-

ternatives demonstrate that our DBGAN creates a new

baseline in the area of graph representation learning.

2. GANs for Representation Learning

GAN [12] has demonstrated its strong distribution fitting

ability in various fields since it was first proposed by Good-

fellow. AAE [24], BiGAN [7], and ALI [9] have already

explored the application of adversarial learning in the field

of image representation. And most recently, BigBiGAN [8]

based on BiGAN has achieved amazing performance in im-

age representation learning.

The success of the above works shows that the distribu-

tion fitting ability of GAN can be used not only to generate

data but also to understand data. Thus, GAN has been in-

troduced into the field of graph representation learning in

various forms [5, 28, 38]. From the perspective of sam-

ple generation, Ding et al. [6] use the generator to gener-

ate fake samples in low-density areas between subgraphs to

enable the classifier to take into account the density char-

acteristics of the graph data. To preserve the structure in-

formation, ProGAN [10] applies the generator to generate

triplets of nodes to discover the proximity in the original s-

pace and preserving it in the low dimensional space. From

the perspective of latent distribution fitting, NetRA [43]

uses adversarial learning to keep the latent representations

7225

away from the noise representation generated by the nor-

mal distribution to improve the anti-jamming capability of

the representations. As shown in Fig.1, ARGA [28] and

AIDW [5] take a similar approach and introduce adversar-

ial learning into [17] and [30] respectively, to improve the

generalization ability of the representations.

Although the above methods have achieved good per-

formance, the disadvantages of them are also obvious.

[6, 10, 38] only consider the local structure information, ig-

nores the global structure and distribution consistency, re-

sulting in noise sensitivity, which makes the representation

less robust. Besides, in [5, 28], the node feature hasn’t been

utilized, and the pre-assumed normal distribution won’t ide-

ally conform to the complex graph data in reality, which

makes the model tend to be over-smoothing and further re-

duces the generalization of the learned latent representation.

3. Methodology

In this section, we first give the problem definition of

graph representation learning, then present bidirectional ad-

versarial learning in DBGAN, and finally introduce a prior

distribution estimation method for latent representation by

prototype learning.

3.1. Problem Definition

An undirected graph is given as G = (V, E), where V =
{v1, · · · , vn} consists of a set of nodes with |V | = n, and E
is a sets of edges with eij ∈ E . X = {x1, · · · , xn} ∈ R

d×n

denotes the node feature matrix of a graph, where xi rep-

resents the raw feature of node vi. The graph structure can

be represented by the adjacency matrix A with Aij = 1 if

eij ∈ E , otherwise Aij= 0. The degree matrix is represented

by diagonal matrix D with Dii =
∑

jAij , and D− 1

2AD− 1

2

is the normalized adjacency matrix. In the following sec-

tions, we denote A as the normalized adjacency matrix.

For a given graph G, graph representation learning aims

to map nodes vi ∈ V to latent representation hi ∈ H where

H = {h1, · · · , hn} ∈ R
q×n denotes the latent representa-

tion matrix. In particular, both the structure of A and the

node content from X are expected to be well preserved in

H space.

3.2. Overall Framework

The overall framework of DBGAN is shown in Fig.2.

In the encoding phase, the encoder E accepts A and X as

inputs and outputs a latent representation matrix H . After

that, E and the data Z sampled from the prior distribution

Pz|(X,A) are input into the discriminator Dz for adversar-

ial training, where zi ∈ Z and hi ∈ H are positive and

negative samples, respectively. Meanwhile, the generator

G accepts Z and A as input and outputs the fake feature

matrix X ′ of the graph, after which X ′ as negative samples

and X as positive samples are sent to the discriminator Dx

for adversarial training. In the reconstruction phase, H is

fed to G, and then outputs the rebuilt X̃ . In addition, H

is reconstructed into Ã through the reconstruction process

Ã = sigmoid(HHT). In this work, we use GCN [16] as

encoder E and generator G, and MLP for both discrimina-

tors Dz and Dx.

3.3. Bidirectional Adversarial Learning

Different from adversarial learning as in AIDW [5] and

ARGA [28], we propose a bidirectional adversarial learn-

ing algorithm that establishes a mutual mapping between

graph data and latent representation. It is capable of balanc-

ing the consistency between distribution-level and sample-

level, thus leading to a significant improvement of general-

ization ability in latent representation space.

The bidirectional adversarial learning is mainly imple-

mented in two streams. One is composed of E and Dz to

model the mapping from graph data to representation, and

the other is composed of G and Dx for the reverse map-

ping. Completely different from the bidirectional adversar-

ial learning in [7], our DBGAN makes full use of the prior

distribution in latent space, which acts as not only the tar-

get of output for the encoder E but also the source of input

for the generator G. The superiority of our bidirectional ad-

versarial learning method can be claimed in three aspects:

(i) bidirectional mapping is more beneficial to exploiting

the inherent graph structure than unidirectional mapping.

It facilitates the trade-off of distribution-level consistency

and sample-level consistency, resulting in more generalized

representations; (ii) the application of adversarial learning

in our DBGAN can address the over-fitting problem well,

which to some extent improves the robustness of represen-

tation; (iii) if the capacity is allowed to be sufficient for

encoder and decoder, the auto-encoder may degrade into a

copying task instead of extracting more useful information

about the data distribution [11]. However, the capacity has

no effect on DBGAN, since G and E will not be optimized

synchronously with the same batch of data, thus enforcing

the reconstruction constraints on latent representation.

Adversarial loss. Adversarial loss is used to minimize

the distance between two distributions. Here we use the

Wasserstein distance in [1] to measure the difference be-

tween the graph data distribution Pr(x) and prior distribu-

tion of latent representation Pz(x), and it can be defined as

W [Pz,Pr] = max
f,‖f‖

L
≤1

Ez∼Pz
[f (z)]− Ex∼Pr

[f (E(x))]

(1)

where f denotes the discriminant function, and ‖f‖L ≤ 1
represents a condition that the discriminant function needs

to satisfy the Lipschitz constraint with Lipschitz constant

1. Here the gradient penalty term proposed in [14] is used

7226

Figure 2. Architecture overview of our DBGAN. A and Ã represent the adjacency and reconstructed adjacency matrix, respectively. X ,

X ′, and X̃ denote the node raw feature, the generated feature, and the reconstructed feature, respectively. LREC denotes reconstruction

loss, LG, LEA, LDX
, and LDZ

denote the adversarial loss for G,E,DX , and DZ , respectively. And Pz(z|X,A) denotes the estimated

prior distribution, “ + “ and“− ” represent the real and fake samples, respectively.

to implement the Lipschitz constraint and the discriminant

function is learned by the discriminator Dz . Hence, Eq.(1)

can be taken as the objective of Dz , while the objective of

E is the opposite. According to Eq.(1), we can define the

adversarial losses of Dz and E as follows

LDz
(z, x) = −Ez∼Pz

[Dz(z)] + Ex∼Pr
[Dz(E(x))]

+λEẑ∼Pẑ
[‖▽ẑDz(ẑ)− 1‖] (2)

LEA(z, x) =Ez∼Pz
[Dz(z)]− Ex∼Pr

[Dz(E(x))] (3)

where ẑ denotes random interpolation of E(x) and z sam-

pled from Pz . When E is updated, Dz will not change.

Thus, Ez∼Pz
[Dz(z)] in Eq.(3) will not provide gradients for

E, and then Eq.(3) can be simplified as

LEA(x) = −Ex∼Pr
[Dz(E(x))] (4)

Likewise, by switching the roles of Pz and Px, we can get

the adversarial losses of G and Dx as follows

LDx
(x, z) = −Ex∼Pr

[Dx(x)] + Ez∼Pz
[Dx(G(z))]

+λEx̂∼Px̂
[‖▽x̂Dx(x̂)− 1‖] (5)

LG(z) = −Ez∼Pz
[Dx(G(z))] (6)

where x̂ denotes random interpolation of G(z) and x sam-

pled from Px.

Reconstruction loss. In addition to the adversarial loss

that guarantees the distribution-level consistency between

the graph space and raw feature space, the reconstruction

loss LREC(x) is also enforced for sample-level consisten-

cy. This is essential to further improve the representation

ability in latent representation space, by both node feature

reconstruction and adjacency matrix reconstruction.

We follow the settings in [17] to get the reconstructed

adjacency matrix Ã from the latent representation, and here

Ã should be similar to real adjacency matrix A. Besides,

by the mapping established by G of the latent representa-

tions to the graph data, we can get the reconstructed feature

matrix X ′ = G(E(X)). The reconstruction loss can be

defined as follows

LREC(x) = Ex∼Pr
[d(X,X ′)] + Ex∼Pr

[d(A, Ã)] (7)

where X ′ = G(E(X)), A′ = sigmoid(E(X) · E(X)T),
and d(x, y) = x log y + (1− x) log(1− y). Therefore, the

overall loss of the encoder E can be written as

LE(x) = LEA(x) + αLREC(x) (8)

It is worth noting that the effectiveness of our DBGAN

can be claimed by Theorem 1.

Theorem 1. Assuming W [Pz,Pr] and W [Pr,Pz] con-

verge, i.e., H = E(X) ∼ Pz , and G(Z) ∼ Pr, it can

be inferred that X ′ = G(E(X)) ∼ Pr. Thus, X ′ and X

will obey an identical distribution Pr, i.e., X ′ ∼ Pr and

X ∼ Pr. Then, X ≈ G(E(X)) can be obtained as the

reconstruction error converges.

3.4. Prior distribution estimation for latent repre
sentation

For the methods based on prior distribution assumption-

s [5, 28], the prior distribution Pz is critical to their per-

formances. For example, for graph data with multiple cate-

gories, it is not reasonable to use normal distribution N(0, 1)

7227

as Pz to represent the graph. Besides, by bidirectional ad-

versarial learning, an appropriate Pz can improve the ro-

bustness and discriminability of the representation. Since

we have no more priors except for the given A and X , an

intuitive approach is to estimate Pz(z|X) that approximates

to Pz(z) by a non-parametric estimation method such as K-

ernel Density Estimation (KDE). In addition, we use PCA

to reduce the dimension of X to get Xp = {xi}i=1,··· ,n,

and then we can get Pz(z|X) as follows

Pz(z|X) =
1

n

n∑

i=1

Kb(z − xi) =
1

nb

n∑

i=1

K(
z − xi

b
) (9)

where K(·) is a kernel function, b denotes the bandwidth,

and Kb(·) is the scaled kernel function.

However, there are some problems with this intuitive ap-

proach. First, the explicit structural information embedded

in A is completely ignored; second, the learned model is

susceptible to the noisy X , thus reducing the robustness of

representation. Therefore, we can approximate Pz(z) using

Pz(z|X,A) instead of Pz(z|X).

DPP-based prototype learning. For heterogeneous A

and X , it is not trivial to obtain Pz(z|X,A) directly. Con-

sidering that A and X are structurally consistent though

they are in different domains, we can utilize the cross-

domain prototypes to bridge the raw feature domain and

the graph domain. Thus Pz(z|X,A) can be replaced with

Pz(z|XSp
, ASp

), where Sp denotes the index set for proto-

types.

For prototype learning, the Determinant Point Process

(DPP) [18] is adopted to select a diversified prototype sub-

set. Specifically, the adjacency matrix A is considered as

the measure matrix. Given a subset VS ⊆ V , whose items

are indexed by S ⊆ N = {1, · · · , n}, then the sampling

probability of S based on the measure matrix A can be de-

fined as follows

PA(S) =
det(AS)

det(A+ I)
(10)

where I denotes the identity matrix, AS ≡ [Aij]i,j∈S , and

det(·) denotes the determinant of a matrix. Obviously, sam-

pling probability defined here is normalized because of

∑

S⊆N

det(AS) = det(A+ I) (11)

According to Eq.(10), a probability will be assigned to any

subset of N , which will result in a large search range for the

prototype index subset. Hence, we have limited the subset

size to |S| = m. When the size of subset S is fixed to m,

we can define the sampling probability as follows

P k
A(S) =

det(AS)∑
|S′|=k det(AS′)

(12)

Table 1. Statistics of the used datasets.

Dataset #Nodes #Edges #Classes #Features

Cora 2708 5429 7 1433

Citeseer 3327 4732 6 3703

Pubmed 19717 44338 3 500

Similarly, according to Eq.(11), P k
A(S) is also normalized.

We explain the definition of importance probability from

the geometric explanation of the matrix determinant. Con-

sidering Aij is computed from ϕ(vi) and ϕ(vj), where ϕ(·)
is a nonlinear mapping function, then det(A) can be inter-

preted as the volume of the geometry spanned by the nodes

vi ∈ V [18]. Therefore, the prototypes Sp measured by

P k
A(Sp) can better sketch the consistent distribution of A

and X .

Structure-aware prior distribution estimation. Ac-

cording to the prototype index set Sp with |Sp| = m, a node

feature matrix Xp can be sampled from X . Then, we use

PCA to reduce the dimension of Xp to get Hp. Assuming

hi ∈ Hp is i.i.d., Pz(z|XSp
, ASp

) can be defined by

Pz(z|XSp
, ASp

) =
1

m

m∑

i=1

Kb(z − hi) =
1

mb

m∑

i=1

K(
z − hi

b
)

(13)

In summary, with the flow in Eq.14, we obtain the ap-

proximation of Pz , i.e., Pz(z|XSp
, ASp

).

Pz(z) → Pz(z|X) → Pz(z|X,A) → Pz(z|XSp
, ASp

)
(14)

4. Experimental Results and Analysis

We first detail our experimental protocol, and then

present comparison results of DBGAN with the state of the

art for graph representation learning.

4.1. Evaluation Setup and Metrics

Datasets. We select three widely used graph datasets, Co-

ra [22], Citeseer [32], and Pubmed [25], to verify the perfor-

mance of DBGAN in unsupervised representation learning.

Each dataset contains a complete node feature matrix X and

an adjacency matrix A. Details of three dataset statistics are

in Table 1.

Protocols and evaluation metrics. The tasks of link pre-

diction and node clustering are employed to evaluate the

discrimination and generalization of learned node represen-

tation. In particular, for link prediction, we divided each

dataset into a training set, a test set, and a validation set,

with a ratio of 85:5:10. To avoid the influence of random-

ness, we average the results over 20 times of execution with

different training set selections as in [17]. Then the mean

scores and standard errors of Area Under Curve (AUC) and

7228

Table 2. Experimental results of link prediction.

Methods
Cora Citeseer Pubmed

AUC AP AUC AP AUC AP

Spectral [26] 84.6±0.01 88.5±0.00 80.5±0.01 85.0±0.01 84.2±0.02 87.8±0.01

DeepWalk [30] 83.1±0.01 85.0±0.00 80.5±0.01 83.6±0.01 84.4±0.00 84.1±0.00

GAE [17] 91.0±0.02 92.0±0.03 89.5±0.04 89.9±0.05 96.4±0.00 96.5±0.00

VGAE [17] 91.4±0.01 92.6±0.01 90.8±0.02 92.0±0.02 94.4±0.02 94.7±0.02

ARGA [28] 92.4±0.003 93.2±0.003 91.9±0.003 93.0±0.003 96.8±0.001 97.1±0.01

ARVGA [28] 92.4±0.004 92.6±0.004 92.4±0.003 93.0±0.03 96.5±0.001 96.8±0.01

DGI [35] 92.6±0.02 93.1±0.01 93.3±0.04 94.1±0.03 95.9±0.002 96.3±0.01

GALA [29] - - 94.4±0.009 94.8±0.01 - -

DBGAN 94.5±0.01 95.1±0.05 94.5±0.04 95.8±0.01 96.8±0.01 97.3±0.02

Average Precision (AP) are reported. While for node clus-

tering, we adopt Kmeans [21] to classify the learned repre-

sentations into several clusters. As in [29], accuracy (ACC),

normalized mutual information (NMI), and adjusted rand

index (ARI) are used to measure the performance of clus-

tering. Likewise, we still report the averaged results over 20

times of execution.

Implementation details. For the flow from latent repre-

sentation to node as in Fig. 2, we follow the training strat-

egy in WGAN-GP [14], where a complete iterative process

is to train G once after training Dx 5 times. In addition,

the discriminator and encoder in our DBGAN are trained

synchronously, since encoder E is optimized for both re-

construction loss and adversarial loss. The model uses

Adam [15] as the optimizer with β1 = 0.9 and β2 = 0.999,

and is implemented on the Tensorflow platform.

Comparison methods. We choose to compare with a to-

tal of fifteen unsupervised graph representation algorithms,

especially those that have achieved the state-of-the-art re-

sults recently. In particular, such compared algorithms can

be divided into three groups.

I. Using node feature or graph structure only. In gen-

eral, Kmeans [21] is considered as a baseline for n-

ode clustering. Due to merely usage of topological

structure of the graph, Spectral Clustering [26] usually

serves as a typical social network representation learn-

ing algorithm. Big-Clam [42] is a large-scale commu-

nity detection algorithm based on non-negative matrix

factorization. Additionally, as one of the most repre-

sentative graph representation learning algorithms, we

compare with DeepWalk [30] which encodes graph n-

odes into latent representations by random walks. A

recent algorithm DNGR [3] using auto-encoder to pre-

serve graph structure is also employed.

II. Using both node feature and graph structure. Cir-

cles [19] is a node clustering algorithm that treats each

node as ego and builds an ego graph that preserves

the original connection relationship. RTM [4] aims to

learn topic distributions of each document from text.

RMSC [40] is a multi-view clustering algorithm that

can effectively remove noise. TADW [41] integrates

node content into Deepwalk, and explains Deepwalk

by matrix factorization.

III. Using node feature and graph structure both with GC-

N. GAE [17] is the first GCN-based auto-encoder al-

gorithm for unsupervised graph representation learn-

ing. VGAE [17] is a variational version of GAE. AR-

GA [28] is another variant of GAE that introduces ad-

versarial learning into GAE. Similarly, VARGA [28]

is a variational version of ARGA. DGI [35] is a GCN-

based method which generates node representations by

maximizing local mutual information in the patch rep-

resentation of the graph. GALA [29] is the latest GCN-

based unsupervised framework for graph data, which

designs a decoder with Laplacian sharpening as an im-

provement of GAE.

4.2. Evaluation on Link Prediction

For link prediction task, the hyperparameters α and λ

are set to 1 on all three datasets, the two hidden layers of

G are set to 256-neuron and 512-neuron respectively, and

the two hidden layers of Dx are set to 512-neuron and 256-

neuron respectively. In particular, on Cora dataset, we set

the hidden and output layers of E to 32-neuron, and the

two hidden layers of Dz are set to 64-neuron and 32-neuron

respectively. While on Citeseer and Pubmed datasets, we

set the hidden layer and output layer of E to 64-neuron, and

the two hidden layers of Dz also to 64-neuron.

The comparative results on link prediction task are

shown in Table 2. It can be concluded that, (i) com-

pared to Spectral Clustering and DeepWalk, the spectral

convolution-based auto-encoder framework can effectively

improve the performance of graph representation in con-

nection prediction tasks. In particular, our DBGAN has

achieved the best performance on all three datasets, with

7229

Table 3. Experimental results of node clustering.

Methods
Cora Citeseer Pubmed

ACC NMI ARI ACC NMI ARI ACC NMI ARI

I

Kmeans [21] 0.492 0.321 0.229 0.540 0.305 0.278 0.595 0.315 0.281

Spectral [26] 0.367 0.126 0.031 0.238 0.055 0.010 0.528 0.097 0.062

Big-Clam [42] 0.271 0.007 0.001 0.250 0.037 0.007 0.394 0.006 0.003

DeepWalk [30] 0.484 0.327 0.242 0.336 0.087 0.092 0.684 0.279 0.299

DNGR [3] 0.419 0.318 0.142 0.325 0.180 0.042 0.458 0.155 0.054

II

Circles [19] 0.606 0.404 0.362 0.571 0.300 0.293 - - -

RTM [4] 0.439 0.230 0.169 0.450 0.239 0.202 0.574 0.194 0.444

RMSC [40] 0.406 0.255 0.089 0.295 0.138 0.048 0.576 0.255 0.222

TADW [41] 0.560 0.441 0.332 0.454 0.291 0.228 - - -

III

GAE [17] 0.596 0.429 0.347 0.408 0.176 0.124 0.672 0.277 0.279

VGAE [17] 0.502 0.329 0.254 0.467 0.260 0.205 0.630 0.229 0.213

ARGA [28] 0.640 0.449 0.352 0.573 0.350 0.341 0.668 0.305 0.295

ARVGA [28] 0.638 0.450 0.374 0.544 0.261 0.245 0.690 0.290 0.306

DGI [35] 0.554 0.411 0.327 0.514 0.315 0.326 0.589 0.277 0.315

GALA [29] 0.745 0.576 0.531 0.693 0.441 0.446 0.693 0.327 0.321

DBGAN 0.748 0.560 0.540 0.670 0.407 0.414 0.694 0.324 0.327

an improvement of 0.1% ∼ 1.9% w.r.t. AUC, and 0.2% ∼
1.9% w.r.t. AP, over the strongest competitor; (ii) our D-

BGAN outperforms ARGA that also introduces adversari-

al learning by about 2.0% and 2.5% on Cora and Citeseer

datasets respectively. This just verifies that the effectiveness

of our proposed structure-aware prior distribution estima-

tion by DPP-based prototype learning; (iii) the approximate

1.0% improvement of our DBGAN on Citeseer dataset over

GALA that is the state-of-the-art method is achieved. This

means that our DBGAN has created a new baseline in the

area of graph representation learning.

4.3. Evaluation on Node Clustering

For node clustering task, the network setup for G and

Dx are the same as those for link prediction task. In par-

ticular, on Cora dataset, we set the hidden and output layers

of E to 64-neuron and 128-neuron, the two hidden layers of

Dz to 64-neuron, and the hyperparameters α and λ to 0.01

and 1 respectively. On Citeseer and Pubmed datasets, we

set the hidden layer and output layer of E to 64-neuron, the

two hidden layers of Dz also to 64-neuron, and the hyper-

parameters α and λ to 1e-5 and 1 respectively.

We present the comparative results on node clustering

in Table 3. It can be observed that, (i) the performance

of such algorithms that use both node features and graph

structure can outperform significantly than those using only

one of them; (ii) Kmeans [21] that uses only node features

improves the overall performance of the methods only us-

ing graph structures, by an obvious margin (from 0.80% to

20.4% for ACC). This validates that introducing node fea-

tures is necessary for node clustering tasks; (iii) it is worth

noting that, although GALA [29] outperforms our DBGAN

slightly in several cases, it is indeed at the cost of high di-

mension of latent representation (e.g., 400 for GALA and

Table 4. Effectiveness evaluation of BAL and PDE.

Methods
Link Prediction Clustering

AUC AP ACC NMI ARI

w/o both 91.0 92.0 0.596 0.429 0.347

w/o PDE 93.1 93.9 0.684 0.472 0.431

w/o BAL 92.5 93.2 0.535 0.389 0.313

DBGAN 94.5 95.1 0.759 0.551 0.525

128 for ours on Cora, and 500 and 64 on Citeseer).

4.4. Ablation Study

On both link prediction and node clustering tasks with

Cora dataset, we validate the effectiveness of bidirectional

adversarial learning (BAL) and structure-aware prior

distribution estimation (PDE), respectively. For such an

ablation study, the basic setup about each subnet refers to

the experiments above. As shown in Table 4, both BAL

and PDE are equally important for our DBGAN to learn

latent node representations. Specifically, compared with

the baseline method ‘w/o both’ without bidirectional adver-

sarial learning and prior distribution estimation, the ‘w/o

PDE’ and ‘w/o BAL’ receive obvious benefits for link pre-

diction (e.g., 2.1% and 1.5% on AUC). Similarly, our D-

BGAN with both BAL and PDE achieves consistently the

best performance over the three ablated methods. It can

also be observed that there exists a performance decrease

for ‘w/o BAL’ on clustering task over ‘w/o both’. But the

improvement of DBGAN implies that employing PDE fa-

cilitates BAL to great extent.

4.5. Efficiency Analysis

The dimension of latent representation has a great effec-

t on graph representation learning. To verify this fact, we

7230

(a) Citeseer(raw) (b) Citeseer(GAE) (c) Citeseer(DGI) (d) Citeseer(DBGAN)

Figure 3. Visualization of the Citeseer dataset.

.

(a) Cora(raw) (b) Cora(GAE) (c) Cora(DGI) (d) Cora(DBGAN)

Figure 4. Visualization of the Cora dataset.

.

(a) AUC (b) AP

Figure 5. Impact of the dimension q of learned latent representa-

tion on AUC and AP for link prediction task.

.
vary the dimension of encoder output layer from 8-neuron

to 1024-neuron for Cora dataset on link prediction task. The

score achieved by DBGAN is shown in Figure5. Obviously,

the performance of DBGAN keeps improving with dimen-

sion increasing. For a fair comparison, a low dimension is

fixed in all our experiments. In particular, all our dimension

is no more than 128, while the compared methods are gen-

erally opposite. Even though in this case, we still achieve

more promising results as in Tables 2 and 3. This further

verifies the dimension-efficient property of DBGAN.

4.6. Graph Visualization

A promising unsupervised graph representation algorith-

m can usually preserve the original graph structure well in

a low-dimensional space. To illustrate such a representa-

tion ability more intuitively, we use t-SNE [23] to visualize

the learned latent representations and original node features

in a two-dimensional space. Figure3 and Figure4 show the

visualization results on Cora and Citeseer datasets respec-

tively. It can be seen that although our DBGAN performs

graph representation learning in an unsupervised manner, it

still can generate node representations that well preserve o-

riginal adjacency relationships. Meanwhile, compared with

raw features and the representations learned by DGI [35],

the results by our DBGAN is more discriminative, with

smaller within-class scatter and larger inter-class scatter.

Specially, we can find that on Cora dataset, there exists

many overlaps between pink and blue dots for GAE [17],

while such a phenomenon is alleviated greatly for our DB-

GAN.

5. Conclusion

In this paper, we propose a distribution-induced bidirec-

tional adversarial learning network (named DBGAN) for

graph representation learning. It is able to estimate the

structure-aware prior distribution of latent representation vi-

a the learned prototypes, instead of the widely used Gaus-

sian assumption, thus generating robust and discriminative

representation of nodes. More importantly, the general-

ization ability of our DBGAN is improved greatly while

preserving representation ability, by balancing multi-level

consistency with a bidirectional adversarial learning frame-

work. We have carried out extensive experiments on three

tasks, and the results demonstrate the obvious superiority of

our DBGAN over currently available alternatives in graph

representation learning. Our ongoing research work will

extend our DBGAN to graph representation learning in the

semi-supervised scenario.

Acknowledgement

This work was supported in part by Science and Tech-
nology Innovation 2030 - ”New Generation Artificial Intel-
ligence” Major Project under Grant 2018AAA0102101, in
part by the National Natural Science Foundation of China
under Grant 61976018 and Grant 61532005, and in part by
the Fundamental Research Funds for the Central Universi-
ties under Grant 2018JBZ001 and Grant 2019YJS048.

7231

References

[1] Martin Arjovsky, Soumith Chintala, and Léon Bottou.

Wasserstein generative adversarial networks. In Internation-

al conference on machine learning, pages 214–223, 2017.

[2] Shaosheng Cao, Wei Lu, and Qiongkai Xu. Grarep: Learning

graph representations with global structural information. In

Proceedings of the 24th ACM international on conference

on information and knowledge management, pages 891–900.

ACM, 2015.

[3] Shaosheng Cao, Wei Lu, and Qiongkai Xu. Deep neural net-

works for learning graph representations. In Thirtieth AAAI

Conference on Artificial Intelligence, 2016.

[4] Jonathan Chang and David Blei. Relational topic models for

document networks. In Artificial Intelligence and Statistics,

pages 81–88, 2009.

[5] Quanyu Dai, Qiang Li, Jian Tang, and Dan Wang. Adversar-

ial network embedding. In Thirty-Second AAAI Conference

on Artificial Intelligence, 2018.

[6] Ming Ding, Jie Tang, and Jie Zhang. Semi-supervised learn-

ing on graphs with generative adversarial nets. In Proceed-

ings of the 27th ACM International Conference on Informa-

tion and Knowledge Management, pages 913–922. ACM,

2018.

[7] Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Ad-

versarial feature learning. arXiv preprint arXiv:1605.09782,

2016.

[8] Jeff Donahue and Karen Simonyan. Large scale adversarial

representation learning. arXiv preprint arXiv:1907.02544,

2019.

[9] Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Olivi-

er Mastropietro, Alex Lamb, Martin Arjovsky, and Aaron

Courville. Adversarially learned inference. arXiv preprint

arXiv:1606.00704, 2016.

[10] Hongchang Gao, Jian Pei, and Heng Huang. Progan: Net-

work embedding via proximity generative adversarial net-

work. In Proceedings of the 25th ACM SIGKDD Interna-

tional Conference on Knowledge Discovery & Data Mining,

pages 1308–1316. ACM, 2019.

[11] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep

learning. MIT press, 2016.

[12] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing X-

u, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative adversarial nets. In Advances

in neural information processing systems, pages 2672–2680,

2014.

[13] Aditya Grover and Jure Leskovec. node2vec: Scalable fea-

ture learning for networks. In Proceedings of the 22nd ACM

SIGKDD international conference on Knowledge discovery

and data mining, pages 855–864. ACM, 2016.

[14] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincen-

t Dumoulin, and Aaron C Courville. Improved training of

wasserstein gans. In Advances in neural information pro-

cessing systems, pages 5767–5777, 2017.

[15] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014.

[16] Thomas N Kipf and Max Welling. Semi-supervised classi-

fication with graph convolutional networks. arXiv preprint

arXiv:1609.02907, 2016.

[17] Thomas N Kipf and Max Welling. Variational graph auto-

encoders. arXiv preprint arXiv:1611.07308, 2016.

[18] Alex Kulesza and Ben Taskar. k-dpps: Fixed-size determi-

nantal point processes. In Proceedings of the 28th Interna-

tional Conference on Machine Learning, ICML 2011, Belle-

vue, Washington, USA, June 28 - July 2, 2011, pages 1193–

1200, 2011.

[19] Jure Leskovec and Julian J Mcauley. Learning to discover

social circles in ego networks. In Advances in neural infor-

mation processing systems, pages 539–547, 2012.

[20] Fuzhen Li, Zhenfeng Zhu, Xingxing Zhang, Jian Cheng, and

Yao Zhao. Diffusion induced graph representation learning.

Neurocomputing, 2019.

[21] Stuart Lloyd. Least squares quantization in pcm. IEEE trans-

actions on information theory, 28(2):129–137, 1982.

[22] Qing Lu and Lise Getoor. Link-based classification. In Pro-

ceedings of the 20th International Conference on Machine

Learning (ICML-03), pages 496–503, 2003.

[23] Laurens van der Maaten and Geoffrey Hinton. Visualiz-

ing data using t-sne. Journal of machine learning research,

9(Nov):2579–2605, 2008.

[24] Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian

Goodfellow, and Brendan Frey. Adversarial autoencoders.

arXiv preprint arXiv:1511.05644, 2015.

[25] Galileo Namata, Ben London, Lise Getoor, Bert Huang, and

UMD EDU. Query-driven active surveying for collective

classification. In 10th International Workshop on Mining and

Learning with Graphs, page 8, 2012.

[26] Andrew Y Ng, Michael I Jordan, and Yair Weiss. On spectral

clustering: Analysis and an algorithm. In Advances in neural

information processing systems, pages 849–856, 2002.

[27] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wen-

wu Zhu. Asymmetric transitivity preserving graph embed-

ding. In Proceedings of the 22nd ACM SIGKDD interna-

tional conference on Knowledge discovery and data mining,

pages 1105–1114. ACM, 2016.

[28] Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, Lina

Yao, and Chengqi Zhang. Adversarially regularized graph

autoencoder for graph embedding. arXiv preprint arX-

iv:1802.04407, 2018.

[29] Jiwoong Park, Minsik Lee, Hyung Jin Chang, Kyuewang

Lee, and Jin Young Choi. Symmetric graph convolution-

al autoencoder for unsupervised graph representation learn-

ing. In Proceedings of the IEEE International Conference on

Computer Vision, pages 6519–6528, 2019.

[30] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deep-

walk: Online learning of social representations. In Pro-

ceedings of the 20th ACM SIGKDD international conference

on Knowledge discovery and data mining, pages 701–710.

ACM, 2014.

[31] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan

Wang, and Jie Tang. Network embedding as matrix factor-

ization: Unifying deepwalk, line, pte, and node2vec. In Pro-

ceedings of the Eleventh ACM International Conference on

Web Search and Data Mining, pages 459–467. ACM, 2018.

7232

[32] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor,

Brian Galligher, and Tina Eliassi-Rad. Collective classifica-

tion in network data. AI magazine, 29(3):93–93, 2008.

[33] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan,

and Qiaozhu Mei. Line: Large-scale information network

embedding. In Proceedings of the 24th international con-

ference on world wide web, pages 1067–1077. International

World Wide Web Conferences Steering Committee, 2015.

[34] Lei Tang and Huan Liu. Leveraging social media networks

for classification. Data Mining and Knowledge Discovery,

23(3):447–478, 2011.

[35] Petar Veličković, William Fedus, William L Hamilton, Pietro

Liò, Yoshua Bengio, and R Devon Hjelm. Deep graph info-

max. arXiv preprint arXiv:1809.10341, 2018.

[36] Chun Wang, Shirui Pan, Guodong Long, Xingquan Zhu, and

Jing Jiang. Mgae: Marginalized graph autoencoder for graph

clustering. In Proceedings of the 2017 ACM on Conference

on Information and Knowledge Management, pages 889–

898. ACM, 2017.

[37] Daixin Wang, Peng Cui, and Wenwu Zhu. Structural deep

network embedding. In Proceedings of the 22nd ACM

SIGKDD international conference on Knowledge discovery

and data mining, pages 1225–1234. ACM, 2016.

[38] Hongwei Wang, Jia Wang, Jialin Wang, Miao Zhao, Weinan

Zhang, Fuzheng Zhang, Xing Xie, and Minyi Guo. Graph-

gan: Graph representation learning with generative adver-

sarial nets. In Thirty-Second AAAI Conference on Artificial

Intelligence, 2018.

[39] Xiao Wang, Peng Cui, Jing Wang, Jian Pei, Wenwu Zhu, and

Shiqiang Yang. Community preserving network embedding.

In Thirty-First AAAI Conference on Artificial Intelligence,

2017.

[40] Rongkai Xia, Yan Pan, Lei Du, and Jian Yin. Robust multi-

view spectral clustering via low-rank and sparse decomposi-

tion. In Twenty-Eighth AAAI Conference on Artificial Intel-

ligence, 2014.

[41] Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun, and

Edward Chang. Network representation learning with rich

text information. In Twenty-Fourth International Joint Con-

ference on Artificial Intelligence, 2015.

[42] Jaewon Yang and Jure Leskovec. Overlapping communi-

ty detection at scale: a nonnegative matrix factorization ap-

proach. In Proceedings of the sixth ACM international con-

ference on Web search and data mining, pages 587–596.

ACM, 2013.

[43] Wenchao Yu, Cheng Zheng, Wei Cheng, Charu C Aggarw-

al, Dongjin Song, Bo Zong, Haifeng Chen, and Wei Wang.

Learning deep network representations with adversarially

regularized autoencoders. In Proceedings of the 24th ACM

SIGKDD International Conference on Knowledge Discovery

& Data Mining, pages 2663–2671. ACM, 2018.

7233

