
Regularizing CNN Transfer Learning with Randomised Regression

Yang Zhong Atsuto Maki

Division of Robotics, Perception, and Learning

KTH Royal Institute of Technology, Sweden

{yzhong, atsuto}@kth.se

Abstract

This paper is about regularizing deep convolutional net-

works (CNNs) based on an adaptive framework for trans-

fer learning with limited training data in the target domain.

Recent advances of CNN regularization in this context are

commonly due to the use of additional regularization ob-

jectives. They guide the training away from the target task

using some forms of concrete tasks. Unlike those related

approaches, we suggest that an objective without a con-

crete goal can still serve well as a regularizer. In par-

ticular, we demonstrate Pseudo-task Regularization (PtR)

which dynamically regularizes a network by simply attempt-

ing to regress image representations to pseudo-regression

targets during fine-tuning. That is, a CNN is efficiently reg-

ularized without additional resources of data or prior do-

main expertise. In sum, the proposed PtR provides: a) an

alternative for network regularization without dependence

on the design of concrete regularization objectives or ex-

tra annotations; b) a dynamically adjusted and maintained

strength of regularization effect by balancing the gradient

norms between objectives on-line. Through numerous ex-

periments, surprisingly, the improvements on classification

accuracy by PtR are shown greater or on a par to the recent

state-of-the-art methods.

1. Introduction

Deep convolutional neural networks (CNNs) have re-

cently advanced the development of computer vision and

flourished in many large-scale computer vision applica-

tions [3, 22, 23, 16]. Since the introduction of AlexNet

[18], deeper and more complex network architectures, such

as VGG [31], Inception [33], ResNet [11], and DenseNet

[12], have been proposed. In addition, other contributions

have been made toward network optimization, which has

been helping the performance and efficiency of CNNs, e.g.

BatchNorm [13] and MiniBatchSGD [7]. Despite the im-

proved effectiveness by those, one of the known open issues

is that CNNs are normally over-parameterized and would

demand a large-scale labeled dataset.

It is a common practice to exploit transfer learning which

adapts a model pre-trained on a source task to a new tar-

get task when given a small amount of labeled dataset.

Specifically, by leveraging the transferability of deep fea-

tures [39] one can map images to a middle or high-level

feature through pre-trained model and therewith train target

specific classifiers [4, 28, 40], which is often called feature

selection. It is also viable to fine-tune a source model for

the target data. As fine-tuning aims to optimize the entire

network for the target task, it often achieves higher effec-

tiveness and has therefore been a rule of thumb in CNN

transfer learning with a limited amount of domain data [1].

During fine-tuning, a source model needs to be mildly tuned

to avoid overfitting due to the fact that deep networks are yet

over-parameterized for small-scale target tasks.

One of the challenges during fine-tuning, which this pa-

per also addresses, is to achieve network regularization for

an over-parameterized model with limited training sam-

ples. In the recent state-of-the-art transfer learning solu-

tions, there is a trend of using an auxiliary training ob-

jective in a framework of multi-objective1 learning for im-

proved regularization [6, 21, 20, 5]. These auxiliary objec-

tives are designed in a concrete and target-specific manner,

through which models would enforce certain desired prop-

erties that facilitates multiple purposes in the learned image

representations. The key to the enhanced regularization on

the target task is then attributed to the improved generality

learned from the imposed auxiliary objectives through par-

tial or entire source task data. However, the regularization

gain comes with a resource-dependent cost of the storage of

off-the-shelf predictions for multiple steps of network train-

ing [21], selecting qualified labeled data samples from the

source domain for a target task [6], using a complex net-

work architecture during training [5], or recalling the source

model [20].

From a network training perspective, as another way to

understand the regularization, a basic effect of training with

1For ease of discussions, we do not distinguish training “objectives”

from “tasks”; thus, multi-objective and multi-task learning may be used

interchangeably.

113637

a regularization objective could be considered as to distract

the minimization of the empirical loss (typically, through a

structural loss). As a result, the regularization power can

also be seen to come from the extra gradients generated by

the employed distracting (regularization) objective. These

gradients cause useful distortions in the gradient-descent

trajectory to force the network to tolerate slightly higher

empirical loss in the course of training, which allows for

more chances in seeking better optima. Now, if such a dis-

traction effect is the essence to network regularization, it

is worthwhile to study whether the regularization objective

could have some alternative form rather than being a real

and concrete task.

Intuitively, if it is the distraction (rather than the conver-

gence of a regularization task) that is the primary interest,

there could be diverse ways to construct a distractor which

interferes the training of the target task while looking for an

improved regularization. One potential approach could be

through a pseudo-task which neither depends on the above

mentioned data and storage availability for multi-task learn-

ing, nor a concrete goal as designed in [6, 21, 20, 5].

In this paper, considering image classification tasks in

a transfer learning scenario, we aim to device a regular-

izer which generates distractions while being independent

of concrete tasks. Our regularizer simply exploits a pseudo-

task2 that injects random noise in the gradients to distract

the training on the target tasks, to seek for improvements.

Experimental results consistently support our conjecture on

various datasets and with different network architectures.

The contributions of this paper are:

1. We demonstrate Pseudo-task Regularization (PtR)

that provides an efficient alternative to other recent best

regularization based on real and concrete tasks.

2. In PtR, useful gradients for regularization are gener-

ated through a pseudo-task, in which we propose to

dynamically adjust the strength of the regularization

based on the gradient norms of the target objective and

the pseudo-task.

The results by those suggest a novel interpretation on the

key elements of network regularization for CNN transfer

learning, which we hope future research will exploit further

to identify the essential requirements for a regularizer.

2. Pseudo-task Regularization

2.1. Overview

Our motivation is to let a CNN learn the representa-

tions for a target task while also being distracted so that the

2Networks are never able to converge on the pseudo-task as it leverages

random regression targets, hence the name pseudo-task. See the details in

Sec. 2.2.

CNN

Pseudo-task

Regularization
(pseudo feature regression loss)

Total

Loss

Feature Repre-

sentation (rep)

Input

Image

Softmax Cross-

Entropy Loss

Target

Classifier

W

Figure 1. An overview of the proposed Pseudo-task Regularization

(PtR). The path linking the blue modules illustrates a vanilla fine-

tuning pipeline with a target classifier trained by a cross-entropy

loss. The PtR loss, which is connected to the feature representation

layer of a CNN, is brought into the network training when the con-

vergence on target task is relatively stable. The total loss therewith

is the sum of cross-entropy loss on the target task and the weighted

PtR loss. The PtR loss module automatically weights the strength

of regularization according to the gradient norm of the target task

on the feature layer. The PtR is explained in Algorithm 1 in detail.

learned representations are not excessively target-task spe-

cific, leading to the loss of generality. For this purpose, as

shown in Figure 1, we choose to exploit a multi-task learn-

ing framework which utilizes two training objectives: one is

the cross-entropy loss for the target-task classification, the

other objective generates distractions to promote the gen-

eralization through a pseudo-regression task. We call it

Pseudo-task Regularization (PtR).

In using both of the training objectives, a significant as-

pect of PtR is to balance the impact of the two loss func-

tions. It is reasonable that the distraction should be on a

proper level which is not too strong and hinder model con-

vergence, nor is on an ignorable magnitude compared to the

gradients of the target classifier. To this end, inspired by [2],

we propose to dynamically balance the strengths of gradi-

ents from the two losses according to the gradient norms

with respect to the image representation during the training

process. The training procedure of our adaptive multi-task

learning framework is described in Algorithm 1.

2.2. Algorithm

Our method learns image representations on a target task

using a pre-trained model in an adaptive multi-objective

learning framework, as shown in Algorithm 1. For a train-

ing iteration i, it computes the cross-entropy loss L
(i)
ce

and additionally the loss by the randomised regressor, the

Pseudo-task Regularization loss L
(i)
PtR, starting when L

(i)
ce

falls below a certain threshold of average epoch loss T .

(The choice of the threshold is not critical as explained

in Figure 2 of the supplementary.) L
(i)
PtR is calculated by

regressing the image representation to a pseudo-regression

target. In PtR, we use random regression targets generated

on-line such that:

L
(i)
PtR = freg(rep

(i), t (i)), (1)

where rep stands for the activation of the representation

layer in a CNN, t for pseudo-regression targets with an

13638

Algorithm 1: Training with Pseudo-task Regular-

ization

Source: a) Off-the-shelf net; b) Labeled data in

target domain

Procedure:

for iteration (batch) i do

Compute cross-entropy loss L
(i)
ce .

if L
(i)
ce far from minimum then

Back propagate L
(i)
ce only;

else
First, perform the following calculations:

1. L
(i)
PtR : the pseudo-regression task loss,

w.r.t. the regression target t (i) generated

on-line;

2. G
(i)
ce and G

(i)
PtR : the gradient norms of

L
(i)
ce and L

(i)
PtR w.r.t. rep(i). rep(i) stands for

the image representations of the batch;

3. G
(i)

ce and G
(i)

PtR : the average of G
(i)
ce and

G
(i)
PtR over the batch;

4. Weight w: w =
G

(i)
ce

G
(i)
PtR·R

for a target ratio

R.

Then, back propagate L
(i)
ce + w · L

(i)
PtR.

end

end

equal dimension as rep, and freg(·) is a regression func-

tion for which we consider two popular choices: L2 loss

and “smooth-L1” (denoted by SML1) loss. Note that the

pseudo targets are randomly generated during training so

that the training instances are not bounded to the generated

regression targets. The details of these targets are described

in Section 3.1.

The total loss L
(i)
total is the weighted sum of the cross-

entropy loss and the regression loss:

L
(i)
total = L(i)

ce + wL
(i)
PtR, (2)

where w is a coefficient to balance the impact of the distrac-

tion regressor, as explained below; L
(i)
ce and the balanced

regression loss w · L
(i)
PtR are back propagated through the

network. Weight decay is omitted for conciseness.

To generate a proper level of distraction for regulariza-

tion, we first calculate the gradient norms of the cross-

entropy loss and those of the regression loss w.r.t. the out-

put feature for each instance, which are denoted by G
(i)
ce and

G
(i)
PtR , respectively (for brevity, the indexes of the training

instance in batch i are omitted):

G(i)
ce = ||

∂L
(i)
ce

∂rep(i)
||2, G

(i)
PtR = ||

∂L
(i)
PtR

∂rep(i)
||2. (3)

The gradient norms are then averaged over the batch as:

G
(i)

ce = E[G(i)
ce], G

(i)

PtR = E[G
(i)
PtR]. (4)

In order to balance the relative impact of L
(i)
ce and L

(i)
PtR ,

we introduce a target gradient norm ratio R. It is defined

by the gradient norm ratio of the cross-entropy loss and a

desired regression loss in the form of signal-to-noise ratio:

R = G
(i)

ce /wG
(i)

PtR. Thus, for the gradient norm ratio to

satisfy R at iteration i, L
(i)
PtR needs to be weighted by a

factor w:

w =
G

(i)

ce

G
(i)

PtR ·R
, (5)

which is calculated on-line per batch before back propaga-

tion.

It is worth nothing that the common way of balancing

losses through a fixed weight (w) would not be an efficient

design choice for PtR, as it would never guarantee precise

regulation on the gradient norm for regularization. On the

contrary, with the use of a dynamic weight PtR is not bound

to a particular regularization (regression) loss.

2.3. Encouraging higher variance in gradients

To explore the impact to the gradients by using a ran-

domly varying regression target, we case-study a minimum

toy example network which is composed by one hidden

neuron (with non-linear activation) connected to one input

and one output. The single hidden neuron is denoted by

f , whose output f (o) is seen as the feature representation

learned by the example network. The input to f , denoted

by f (i), is the product of an input x and its learnable weight

a on the input path. That is: f (o) = δ(f (i)), f (i) = a ·x, and

δ(·) represents the ReLU function.

When a regression target t is applied to f (o), the regres-

sion loss Ereg = 1
2 (f

(o) − t)2. During back propagation, if

neuron f is activated, the gradient on a by the chain rule is:

∂Ereg

∂a
=

∂Ereg

∂f (o)
·
∂f (o)

∂f (i)
·
∂f (i)

∂a
=| f (o) − t | ·x

=

{

(f (o) − t) · x , if (f (o) − t) ≥ 0,

−(f (o) − t) · x , otherwise.

(6)

The variance of the gradient of a, if a simplified assumption

can hold that x being a constant, V ar(
∂Ereg

∂a
), is determined

by that of f (o) and regression target t, such that

Var(
∂Ereg

∂a
) = Var(f (o)) + Var(t), (7)

given that t is a variable independent of f (o).

It can be seen that, if the regularization is achieved

through feature norm penalization (e.g., as proposed by

13639

[10]), t in Equation 6 equals a constant of 0. Consequently,

in Equation 7, the variance of gradients gets smaller com-

pared to using other regression targets which follow a cer-

tain distribution. PtR generates gradients with higher vari-

ance using an independent randomly-varying pseudo tar-

get. By leveraging them, PtR would explore more local op-

tima to yield higher chances in avoiding saddle points and

achieving stronger regularization.

3. Experiments and Results

3.1. Experimental Setup

Datasets. For transfer learning, training CNNs with data

across domains has been found to be an important regular-

ization method. However, our experiments focus on a situa-

tion where data of other domain is not available. We also fo-

cus on a challenging scenario where the training samples are

sparse. For this purpose, four commonly used small-scale

transfer learning datasets are selected to comparatively eval-

uate PtR: Flower102 [27], CUB200-2011 [35], MIT67 [30],

and Stanford40 [37], two of which represent fine-grained

classification tasks of different scenarios. Besides, we also

chose 500 identities3 from the WebFace [38] dataset, de-

noted by “WebFace500”, to evaluate PtR when performing

transfer learning from image classification to closed-set face

identification with scarce samples per class. Caltech256 [8]

was also used for performance evaluation in a general image

recognition scenario.

On Flower102 we faithfully follow the data splits for

training and testing. On the WebFace500 dataset, each

identity has random 20 training images, five validation im-

ages, and on average 24 test images. Faces were segmented

and normalized to a fixed scale with a face detector [15]

before training. From Caltech256, we formed two inde-

pendent training sets with 30 and 60 training samples per

class, respectively, for consistency with [6, 20]. For other

datasets, 10% of the training images were randomly sepa-

rated to form the validation sets for model training.

Training and Evaluation. To augment the training im-

ages, we employed random jittering and subtle scaling and

rotation perturbations to the training images. We resized

images of all involved datasets to 250 × 250 pixels, and

the aspect ratio of the images was retained by applying zero

padding all the time. During test time, we averaged over the

network responses from the target-task classifiers over ten

crops which were sampled from the corners and the centers

of originals and the flipped counterparts.

As we consider the vanilla fine-tuning procedure as the

baseline, it is very important to ensure that the effectiveness

of vanilla fine-tuning is not underestimated. To this end,

we carefully selected learning rate schedules for fine-tuning

3Random 500 identities that have the most training instances on the

WebFace dataset.

to demonstrate the test accuracy on each dataset with each

type of network architecture. To conduct fair comparisons

to fine-tuning as much as possible, we also used the same

learning rates used by fine-tuning in our dynamic pseudo-

task regularization approach; the learning rate schedules

were slightly different due to the difference in converging

speeds. A learning rate was decreased when the valida-

tion loss and validation accuracy stopped progressing and it

was decreased twice before model training was terminated.

The models trained after the last epoch of their learning rate

schedules were always used for performance evaluations.

Implementation details. Experiments on different

datasets shared many common settings. We used the stan-

dard SGD optimizer with momentum set to 0.9. The batch

size was set to 20 to reduce overfitting as much as possible

(unless otherwise stated); weight decay was set to 0.0005

for VGG networks [31] and 0.0001 for ResNet [11] archi-

tectures except in a number of ablation studies. The dropout

ratio for VGG networks was set to 0.5. Our experiments

were implemented with PyTorch [29].

We always started the experiments from an ImageNet

[3] pretrained model. As the training data was visited ran-

domly, we ran five independent runs and average the re-

sults to mitigate the impact of randomness for all the ex-

periments. The classification accuracy was mostly used to

compare with related methods except [6].

Other hyperparameters to PtR. In the PtR, the impact

of the additional loss is adjusted primarily by the target gra-

dient norm ratio R that controls the interference gradient

magnitude. Then, the gradients with respect to each fea-

ture dimension are largely determined by the nature of a

pseudo-task which we employ in our experiments, such as

the distribution of pseudo-regression targets. Without loss

of generality we considered the random targets, t (i), fol-

lowing a uniform distribution with a mean value of m such

that m = E[t
(i)
j]; i.e., for any single regression target t

(i)
j

in t (i), t
(i)
j ∈ [0 , 2m), where j is an instance in batch i

(j ∈ [1, |i|]) and |i| is the batch size.

We used independent hold-out sets to efficiently deter-

mine R and m (to avoid expensive cross-validation param-

eter search): for ResNet structures R=3 and m=1 are con-

sistently used on all datasets; for the VGG-16 structure, R
varies in the range between 3 and 5, and m around 10 to

15. We chose T=1 as a sensible setting in all the experi-

ments given that the influence by the choice of T is limited.

Details are given in Figure 2 of the supplementary.

3.2. Results and Comparisons

As the VGG-16 architecture has been used very com-

monly in many different transfer learning applications, we

first evaluate PtR with it across five different dataset using

SML1 and L2 for the regression function respectively, and

compare against the fine-tuning baseline. The results are

13640

Table 1. The comparative classification accuracy by the Pseudo-task Regularization (PtR), against vanilla fine-tuning (in column Baseline)

with two different choices of regression functions, SML1 and L2, with the VGG-16 architecture. The performance gain brought about by

PtR with different regression loss functions are in the two columns in the center under SML1 and L2, respectively. The corresponding error

rate reduction values are in the rightmost columns. The standard deviation of each experiment is given in parenthesis.

Baseline
Regularization Gain Error Rate Reduction

SML1 L2 SML1 L2

Flower102 83.92% (0.36) 2.38% (0.32) 2.61% (0.42) 14.80% 16.23%

CUB200 75.07% (0.26) 3.05% (0.39) 2.84% (0.37) 12.23% 11.39%

MIT67 71.55% (0.38) 1.42% (0.58) 1.39% (0.40) 4.99% 4.89%

Stanford40 76.99% (0.19) 2.50% (0.09) 2.21% (0.16) 10.86% 9.60%

WebFace500 77.54% (0.52) 0.95% (0.56) 0.83% (0.47) 4.23% 3.70%

listed in Table 1.

It is observed that PtR helps improve the vanilla fine-

tuning on all the classification tasks tested with two dif-

ferent regression functions; it brings about reasonable and

consistent performance gain. On WebFace500 which con-

tains the most training samples, it reduced the error rate for

around 4%, but on Flower102 and CUB200 where the train-

ing samples are more sparse, it is particularly more effec-

tive and reduces the error rates for more than 10%. These

results suggest that, on the one hand, collecting more data

helps regularization even for small datasets. On the other

hand, when the training samples become sparse, PtR man-

ages to keep the learned representations from being exces-

sively target-task specific and further promises the networks

to learn more useful representations. The choice of regres-

sion function does not appear to be a significant factor as the

test accuracy with SML1 and L2 are close; SML1 is used in

all the following experiments.

We have also conducted a large number of com-

parative experiments to recent best performing multi-

task/objective based regularization approaches: Joint Train-

ing (JointTrain) [21], Learning without Forgetting (LwF)

[21], Borrowing Treasures from the Wealthy (BTfW) [6],

Inductive Bias (Ind.Bias) [20], and Pair-wise Confusion

(PC) [5]. In addition, we evaluated the regularization

through feature norm penalty (denoted by FNP) [10] in the

context of transfer learning (hyperparameters of FNP were

therefore set by using the same procedure of PtR for fair-

ness). We have also compared the impact of weight decay

on CUB200 and Caltech256 by disabling weight decay (de-

noted by “w/o WD”). As we intended to perform all ex-

periments on a single GPU module with 12GB memory,

the ResNet-101 was used as a compromise to compare to

the results achieved by a special memory-saving version of

ResNet-152 in [6]. For fair evaluations, all the correspond-

ing vanilla fine-tuning baseline and improved test accuracy

are shown in the following tables together with accuracy

gain.

The comparative results on CUB200 dataset are shown in

Table 2. It can be seen that the accuracy gain by PtR (with

VGG-16) is slightly better than JointTrain where real source

data was used for regularization; it also performs better than

LwF where off-the-shelf predictions were used. Compared

to FNP, PtR outperforms by a visible margin of 1.3%. Al-

though PtR achieved lower accuracy gain than PC, the gaps

is not significant regardless of network architecture (around

0.5%). For the absolute accuracy, it is also noticeable that

PtR achieved the highest baseline performance as well as

that of the optimized models among all the other methods.

Weight decay seems not impacting PtR, but the baseline ac-

curacy is 0.7% higher when training without it.

Table 2. Comparing classification accuracy on the CUB200

dataset. All the numerical results are in %. The network and other

settings (if any) used by each method are given in parenthesis.

Method Baseline Acc. Gain

JointTrain (VGG-16) 72.1 74.6 2.5

LwF (VGG-16) 72.1 72.3 0.2

PC(VGG-16) 73.3 76.5 3.2

PtR (VGG-16) 75.1 78.1 3.0

PC (ResNet-50) 78.2 80.3 2.1

FNP (ResNet-50) 80.3 80.6 0.3

PtR (ResNet-50) 80.3 81.9 1.6

PtR (ResNet-50, w/o WD) 81.0 82.0 1.0

On Flower102 dataset, as shown in Table 3, the gain by

PtR is larger than PC for 1.4% with the VGG-16 structure; it

is just equivalent to that of PC with the ResNet-50 network.

FNP brings some regularization margin, but it is 0.3% lower

than that of PtR. For PtR, it achieves consistent gain in ac-

curacy with ResNet-50 and ResNet-101, and the depth of

the network does not appear to deteriorate the regulariza-

tion effect. Although we achieved an equally good baseline

performance as BTfW (in parenthesis of the bottom row of

Table 3), the regularization gain of BTfW is higher than

PtR or any other methods. The difference in regularization

may suggest that training with sufficient labeled data in a

multi-task learning framework is a stronger regularization

for transfer learning.

Similar observations can also be found from the results

on MIT67 dataset, as shown in Table 4. With the VGG-

16 architecture, regularization effect by PtR is again very

close to that of JointTrain and outperforms LwF. With the

ResNet, the regularization gain by PtR is equivalent to that

of Ind.Bias and FNP. BTfW also achieves higher gain than

13641

Table 3. Classification accuracy and accuracy gain (in %) compar-

isons on the Flower102 dataset. The mean class accuracies used to

compare to BTfW [6] are listed in parenthesis.

Method Baseline Acc. Gain

PC(VGG-16) 85.2 86.2 1.0

PtR (VGG-16) 83.9 86.3 2.4

BTfW (ResNet-152) 92.3 94.7 2.4

PC (ResNet-50) 92.5 93.5 1.0

FNP (ResNet-50) 91.0 91.5 0.5

PtR (ResNet-50) 91.0 91.8 0.8

PtR (ResNet-101) 90.6(92.3) 91.6(93.2) 1.0(0.9)

Table 4. Comparative results on the MIT67 (in %). The mean class

accuracies used to compare to BTfW [6] are in parenthesis.

Method Baseline Acc. Gain

JointTrain (VGG-16) 74 75.5 1.5

LwF (VGG-16) 74 74.7 0.7

PtR (VGG-16) 71.6 73.0 1.4

BTfW (ResNet-152) 81.7 82.8 1.1

Ind.Bias (ResNet-101) 77.5 78 0.5

FNP (ResNet-50) 77.4 78.0 0.6

PtR (ResNet-50) 77.4 77.9 0.5

PtR (ResNet-101) 78.7(78.7) 79.2(79.2) 0.5(0.5)

the other methods with ResNet. We would infer that op-

timizing a network simultaneously on multiple tasks with

sufficient selected real data samples might be more effec-

tive than other related methods. As for PtR, it brings about

consistent margin over the fine-tuning base-line regardless

of the depth of ResNet architecture, which also coincides

with the results in Table 3.

The results on Caltech256 dataset are in Table 5. In these

experiments, we increased the batch size to 32, which is a

value in between of those used by [6, 20], to make fair com-

parisons as much as possible. Interestingly, we achieved

the best baseline accuracy among all the comparing meth-

ods with both of the Caltech256 partitions. Consequently,

it could be harder for PtR to demonstrate the regulariza-

tion power in comparison to others because a better gener-

alized baseline usually has a smaller room to improve the

generalization. However, we can still observe some similar

trends. First, as in the previous experiments, by training a

network with sufficient annotated data of multiple classes,

BTfW achieves the best regularization gain (around 2.6%

with both setups). Second, PtR consistently delivers regu-

larization gain; for both data splits the gains are equivalent,

which indicates that PtR would not be so sensitive to the

size of training data of each category. The improvement

brought about by FNP might be marginal or even unstable

given the negative gain on Caltech256-30. The impact of

weight decay on the classification accuracy of PtR is not

visible.

Through the analysis of the comparative results, we ar-

gue that PtR delivers consistent gains, with statistical sig-

Table 5. Mean class accuracies and accuracy gains (in %) on the

Caltech256 with two partitions of training data. Bsln is short for

baseline. Mean class accuracies were the same as the average clas-

sification accuracy over the test set, thus are not given in parenthe-

sis in this table. BTfW [6] was using ResNet-152 while others

were using ResNet-101. The network used by each method is not

shown in this table for brevity.

Caltech256-30 Caltech256-60

Method Bsln. Acc. Gain Bsln. Acc. Gain

BTfW 81.2 83.8 2.6 86.4 89.1 2.7

Ind.Bias 81.5 83.5 2.0 85.3 86.4 1.1

FNP 84.0 83.8 -0.2 86.8 86.9 0.1

PtR 84.0 84.5 0.5 86.8 87.2 0.4

PtR,w/o WD 84.0 84.5 0.5 86.9 87.2 0.3

nificance (also see the standard deviation given in Table 1

in the supplementary), which are on a par with the recent

state-of-the-art approaches. The compared methods con-

sider using auxiliary objectives attached to concrete tasks

while enhancing regularization, but PtR which leverages an

additional pseudo-task as a regularizer is free from design

of concrete auxiliary tasks and more straightforward. Com-

pared to LwF, the “warmup” training stage and collecting

predictions of the target data from an off-the-shelf model is

not required by PtR. It is not needed for PtR to remember

the “starting point” parameters of an off-the-shelf model as

in [20]. PtR is also more efficient than [5] which requires a

Siamese network, and it does not depend on annotated data

from other domain either as in [6].

4. The Effect of PtR on Predictions

To investigate the impact of PtR, we case-study on the

validation set of the CUB200 dataset with ResNet-50 net-

work to explore how the predictions have been altered in

comparison to those from vanilla fine-tuning. We base our

analysis on the concept of confusion matrix and define a

matrix C
(D×D) (D=200), each row of which contains cu-

mulative predicted probabilities across all the validation

samples for different class categories. We compute matri-

ces CPtR and Cft for the cases of using PtR and baseline

fine-tuned model, respectively. We then sum their diagonal

elements into:

SPtR =
∑

Diag(CPtR), Sft =
∑

Diag(Cft). (8)

Feeding in 584 validation images, we had SPtR = 425 and

Sft = 404, which indicates that the pseudo-task regularized

model shows more certainty in the correct classes on av-

erage than the fine-tuned model. Furthermore, in terms of

the average entropy of the predictions, the pseudo-task reg-

ularizer reduced it from 1.33 to 1.15 bits. This is due to

better regularization that allows the model to eliminate mi-

nor probabilities in false predictions, which in turn reduced

13642

Figure 2. A sample from the validation set of CUB200 that PtR correctly rectified mis-classification caused in the vanilla fine-tuning.

Left: An input image. Middle: Categorical distributions made by the baseline model and PtR. The second largest prediction made by FT

baseline model is around 30% for Class 171. Right: Two randomly picked training samples of the class predicted by the baseline (top) and

two samples of the class predicted by PtR (bottom).

the average entropy. The reduction of entropy also implies

that the class predictions have been disambiguated by PtR.

Correspondingly we computed S′

PtR and S′

ft, the sum of

off-diagonal elements of CPtR and Cft, respectively. We

observed that the regularized model tends to make predic-

tions with fewer minor probabilities than the vanilla fine-

tuning model. It gives higher certainty to its predictions

on the ground truth class given the smaller S′

PtR, which is

consistent with the reduced entropy in comparison to vanilla

fine-tuning.

To further qualitatively study how the predictions made

by the vanilla fine-tuning model (baseline) have evolved by

PtR, we case study two types of input samples for which:

i) PtR rectified the baseline model’s errors, and

ii) PtR mis-classified on the contrary to the baseline.

Namely, i) is true rectification and ii) is false rectification.

Two of these examples are compared in Figure 2 and 3.

It can be seen that PtR has an effect of encouraging the

predictions of the instances of other classes which are vi-

sually close to the ground truth class4. This indicates that

the pseudo task regularizer implicitly helps the network fo-

cus on and learn to distinguish classes of higher visual sim-

ilarity, and hence helps the classification accuracy overall

(for around 1% on CUB200’s validation set). At the same

time, from our observations, PtR does not tend to produce

so many minor probabilities on other classes which are less

similar as the baseline model does. This aids the regular-

ized model to suppress the uncertainties and focus on a few

most similar candidate classes.

5. Related Work

Regularization methods that are commonly used for fine-

tuning CNNs can be generally grouped into four categories:

data perturbation, parameter norm penalty, dropout, and

4In Figure 2, the second largest prediction made by PtR is at another

class of similar appearance; in Figure 3, the wrongly predicted class is also

similar to the ground truth.

multi-task learning. Image augmentation as a popular form

of image perturbation has been proven to be particularly

useful to prevent CNNs from overfitting. In this paper, we

also assume to perturb our training instances by random

augmentations. The supervision signal can be perturbed for

better regularization as well. This can be achieved by learn-

ing to predict soft targets rather than hard binary ones as

in [36]. In this work, label perturbation is not considered so

that we can deliver more ablated studies on the effectiveness

of auxiliary training objectives.

The parameter norm penalty, or weight decay more

specifically, has been one of the most common ways of

regularization in training deep models. Our PtR leveraged

weight decay by default, but we also evaluated PtR with-

out weight decay to study its impact on accuracy. Another

method being apparently similar to weight decay is to use

feature norm penalty (FPN) or feature contraction on the

representation layer of a network [10, 19, 25]. Superficially,

FNP would resemble to PtR if the regression target for PtR

was towards a static norm of zero without involving ran-

domness. (An additional feature of PtR which should be

noted is that it also balances objectives automatically. See

Section 2.3 for the technical difference.) Dropout is also

one of the standard techniques to improve model regulariza-

tion by temporarily shielding a part of the hidden units in the

bottleneck layer and fully connected layers during training

[32, 26]. For the VGG-16 structures which we employed in

our experiments, dropout was also used after flattened hid-

den layers.

A more recent approach of regularization in trans-

fer learning has been to train CNNs with an auxiliary

task/objective through multi-task learning [21, 6]. These

objectives in the recent best performing methods are often

designed with the expectation that more generic features are

less likely to overfit to the target task in a few different ways.

In [6], the network was simultaneously trained by the tar-

get data and a number of selected source data samples that

13643

Figure 3. A sample from the validation set of CUB200 that the standard fine-tuning correctly classified but PtR wrongly predicted. See

also the caption of Figure 2.

are similar to the target data when viewed in low-level fea-

tures. Another way to encourage CNN regularization, in-

stead of relying on the availability of foreign data, was to

let the model stay not too far from the original structure of

the model trained by a large source task. As demonstrated

by [21], one can attempt to retain the predictions of the tar-

get domain images made by the off-the-shelf source model

while learning on the new target task (we acknowledge that

the original intention of doing so in [21] was not for regu-

larization). It is therefore reasonable to interpret the use of

off-the-shelf predictions as implicitly using the source do-

main training data. The other way to make the trained mod-

els attracted to the original model was to explicitly force

the target model being trained to stay in a vicinity of the

source model in the weight space; the work in [20] lever-

aged the inductive bias in a fine-tuning scenario to prevent

the learned features from becoming overly specific.

For fine-grained vision tasks, a very recent approach [5]

suggested to “confuse” the network by encouraging dif-

ferent class-conditional probability distributions to come

closer together, thus reducing the inter-class distance. In

the cases where only style transfer is considered, one can

attempt to reduce the domain variance through certain met-

rics (i.e., perform domain adaptation) as in [34, 24].

A common aspect of these aforementioned regularizers

is that they depend on a concrete task or objective. But since

they are not purposed for explicitly optimizing the target

objective, they can all be largely seen as “distractors”. The

approach studied in this paper also causes distractions, but

we suggest that a distractor could work equally effectively

without involving a concrete auxiliary objective or any form

of source domain data as supervision labels.

6. Conclusions and Discussions

We have introduced a Pseudo-task Regularization (PtR)

which leverages a multi-task learning framework to gen-

erate useful interference by a pseudo-regression task, for

improving regularization for transfer learning with limited

data samples. The regularization effect from PtR is dynamic

in that PtR adjusts the strength of the regularization based

on the gradient norms of the target objective and the pseudo-

task. Unlike existing approaches, PtR does not depend on

a concrete or real regularization objective. Surprisingly, we

observed that the performance gain brought about by the

simple PtR was on a par or better than the related recent so-

lutions, and therefore we suggest that PtR is available as an

efficient alternative to recent best performing regularization

methods that are based on concrete objectives.

We attribute the generalization gain from PtR to two as-

pects while a widely recognized theory on DNN general-

ization is yet to be established [14, 42]. First, the gradient

noise generated by PtR in SGD makes batch-wise gradients

noisier and results in smaller equivalent batch size in that

respect. The resulting increased quotient of learning rate

and (equivalent) batch size have been shown helpful to es-

cape sharp minima [14, 17]. The nosier gradients prolongs

training which could in turn encourage networks exploring

more and better local minima, hence class disambiguation.

Second, the superiority of anisotropic noise of SGD over its

isotropic counterpart has been demonstrated [42], and the

anisotropic gradient noise generated by PtR could increase

the chance to find flatter minima.

Furthermore, it will be also interesting to study the im-

pact of PtR on the calibration performance of the network

[9] , and how PtR’s gradients interact with those of the base-

line as in [41]. This is however beyond the scope of the cur-

rent work as well as the above mentioned relation to the loss

landscape – those are among the topics for future research.

Acknowledgement

We would like to thank Ryuzo Okada and colleagues of

Toshiba Corporate R&D Center for funding the research

and for collaboration. We also wish to thank Vladimir Li

and Matteo Gamba for fruitful discussions, and NVIDIA

Corporation for their generous donation of GPUs. The sec-

ond author is supported by the Swedish Research Council,

which is gratefully acknowledged.

13644

References

[1] Hossein Azizpour, Ali Sharif Razavian, Josephine Sullivan,

Atsuto Maki, and Stefan Carlsson. Factors of transferability

for a generic convnet representation. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 2016.

[2] Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and An-

drew Rabinovich. Gradnorm: Gradient normalization for

adaptive loss balancing in deep multitask networks. In In-

ternational Conference on Machine Learning (ICML), 2018.

[3] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Fei-Fei Li. Imagenet: A large-scale hierarchical image

database. In The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2009.

[4] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman,

Ning Zhang, Eric Tzeng, and Trevor Darrell. Decaf: A deep

convolutional activation feature for generic visual recogni-

tion. In International Conference on Machine Learning

(ICML), 2014.

[5] Abhimanyu Dubey, Otkrist Gupta, Pei Guo, Ramesh Raskar,

Ryan Farrell, and Nikhil Naik. Pairwise confusion for fine-

grained visual classification. In European Conference on

Computer Vision (ECCV), 2018.

[6] Weifeng Ge and Yizhou Yu. Borrowing treasures from the

wealthy: Deep transfer learning through selective joint fine-

tuning. In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2017.

[7] Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter No-

ordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tul-

loch, Yangqing Jia, and Kaiming He. Accurate, large mini-

batch SGD: training imagenet in 1 hour. Arxiv preprint

1706.02677, 2017.

[8] Gregory Griffin, Alex Holub, and Pietro Perona. Caltech-256

object category dataset. Technical report, California Institute

of Technology, 2007.

[9] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger.

On calibration of modern neural networks. In International

Conference on Machine Learning (ICML), 2017.

[10] Bharath Hariharan and Ross Girshick. Low-shot visual

recognition by shrinking and hallucinating features. In The

IEEE International Conference on Computer Vision (ICCV),

2017.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In The IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), 2016.

[12] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kil-

ian Q. Weinberger. Densely connected convolutional net-

works. In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2017.

[13] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. arXiv preprint 1502.03167, 2015.

[14] Stanislaw Jastrzebski, Zachary Kenton, Devansh Arpit,

Nicolas Ballas, Asja Fischer, Yoshua Bengio, and Amos

Storkey. Three factors influencing minima in SGD. Arxiv

1711.04623, 2018.

[15] Vahdat Kazemi and Josephine Sullivan. One millisecond

face alignment with an ensemble of regression trees. In The

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), 2014.

[16] Alex Kendall, Matthew Grimes, and Roberto Cipolla.

PoseNet: A convolutional network for real-time 6-dof cam-

era relocalization. In Proc. of the International Conference

on Computer Vision (ICCV). 2015.

[17] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal,

Mikhail Smelyanskiy, and Ping Tak Peter Tang. On large-

batch training for deep learning: Generalization gap and

sharp minima. In Proc. of the International Conference on

Learning Representations (ICLR), 2017.

[18] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton.

Imagenet classification with deep convolutional neural net-

works. In Advances in Neural Information Processing Sys-

tems. 2012.

[19] Vladimir Li and Atsuto Maki. Feature contraction: New con-

vnet regularization in image classification. In British Ma-

chine Vision Conference (BMVC), Newcastle, UK, 2018.

[20] Xuhong Li, Yves Grandvalet, and Franck Davoine. Explicit

inductive bias for transfer learning with convolutional net-

works. In International Conference on Machine Learning

(ICML), 2018.

[21] Zhizhong Li and Derek Hoiem. Learning without forgetting.

In European Conference on Computer Vision (ECCV), 2016.

[22] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence

Zitnick. Microsoft COCO: Common objects in context. In

European Conference on Computer Vision (ECCV), 2014.

[23] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.

Deep learning face attributes in the wild. In The IEEE In-

ternational Conference on Computer Vision (ICCV), 2015.

[24] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jor-

dan. Learning transferable features with deep adaptation net-

works. In International Conference on Machine Learning

(ICML), 2015.

[25] Atsuto Maki. Toward principled regularization of deep net-

works—from weight decay to feature contraction. Science

Robotics, 4(30), 2019.

[26] Pietro Morerio, Jacopo Cavazza, Riccardo Volpi, Rene Vidal,

and Vittorio Murino. Curriculum dropout. In IEEE Interna-

tional Conference on Computer Vision (ICCV), 2017.

[27] Maria-Elena Nilsback and Andrew Zisserman. Automated

flower classification over a large number of classes. In Proc.

of the Indian Conference on Computer Vision, Graphics and

Image Processing, 2008.

[28] Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic.

Learning and transferring mid-level image representations

using convolutional neural networks. In The IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

2014.

[29] Adam Paszke, Sam Gross, Soumith Chintala, Gregory

Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-

ban Desmaison, Luca Antiga, and Adam Lerer. Automatic

differentiation in pytorch. In NIPS-W, 2017.

13645

[30] Ariadna Quattoni and Antonio Torralba. Recognizing in-

door scenes. 2009 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition Workshops (CVPR

Workshops), 2009.

[31] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. Arxiv

preprint 1409.1556, 2014.

[32] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya

Sutskever, and Ruslan Salakhutdinov. Dropout: A simple

way to prevent neural networks from overfitting. Journal of

Machine Learning Research, 2014.

[33] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,

Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent

Vanhoucke, and Andrew Rabinovich. Going deeper with

convolutions. In The IEEE International Conference on

Computer Vision (ICCV), 2014.

[34] Eric Tzeng, Judy Hoffman, Trevor Darrell, and Kate Saenko.

Simultaneous deep transfer across domains and tasks. In The

IEEE International Conference on Computer Vision (ICCV),

2015.

[35] Catherine Wah, Steve Branson, Peter Welinder, Pietro Per-

ona, and Serge Belongie. The Caltech-UCSD Birds-200-

2011 Dataset. Technical Report CNS-TR-2011-001, Cali-

fornia Institute of Technology, 2011.

[36] Lingxi Xie, Jingdong Wang, Zhen Wei, Meng Wang, and

Qi Tian. Disturblabel: Regularizing cnn on the loss layer.

In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2016.

[37] Bangpeng Yao, Xiaoye Jiang, Aditya Khosla, Andy Lai Lin,

Leonidas Guibas, and Li Fei-Fei. Human action recognition

by learning bases of action attributes and parts. In The IEEE

International Conference on Computer Vision (ICCV), 2011.

[38] Dong Yi, Zhen Lei, Shengcai Liao, and Stan Z Li. Learning

face representation from scratch. Arxiv preprint 1411.7923,

2014.

[39] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lip-

son. How transferable are features in deep neural networks?

In Advances in Neural Information Processing Systems 27.

2014.

[40] Matthew D. Zeiler and Rob Fergus. Visualizing and under-

standing convolutional networks. In European Conference

on Computer Vision (ECCV), 2014.

[41] Xiangyun Zhao, Haoxiang Li, Xiaohui Shen, Xiaodan Liang,

and Ying Wu. A modulation module for multi-task learning

with applications in image retrieval. In Proceedings of the

European Conference on Computer Vision (ECCV), 2018.

[42] Zhanxing Zhu, Jingfeng Wu, Bing Yu, Lei Wu, and Jinwen

Ma. The anisotropic noise in stochastic gradient descent: Its

behavior of escaping from sharp minima and regularization

effects. In Proc. of the Interational Conference on Machine

Learning (ICML), 2019.

13646

