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Abstract

This paper is about regularizing deep convolutional net-
works (CNNs) based on an adaptive framework for trans-
fer learning with limited training data in the target domain.
Recent advances of CNN regularization in this context are
commonly due to the use of additional regularization ob-
jectives. They guide the training away from the target task
using some forms of concrete tasks. Unlike those related
approaches, we suggest that an objective without a con-
crete goal can still serve well as a regularizer. In par-
ticular, we demonstrate Pseudo-task Regularization (PtR)
which dynamically regularizes a network by simply attempt-
ing to regress image representations to pseudo-regression
targets during fine-tuning. That is, a CNN is efficiently reg-
ularized without additional resources of data or prior do-
main expertise. In sum, the proposed PtR provides: a) an
alternative for network regularization without dependence
on the design of concrete regularization objectives or ex-
tra annotations; b) a dynamically adjusted and maintained
strength of regularization effect by balancing the gradient
norms between objectives on-line. Through numerous ex-
periments, surprisingly, the improvements on classification
accuracy by PtR are shown greater or on a par to the recent
state-of-the-art methods.

1. Introduction

Deep convolutional neural networks (CNNs) have re-
cently advanced the development of computer vision and
flourished in many large-scale computer vision applica-
tions [3, 22, 23, 16]. Since the introduction of AlexNet
[18], deeper and more complex network architectures, such
as VGG [31], Inception [33], ResNet [ 1], and DenseNet
[12], have been proposed. In addition, other contributions
have been made toward network optimization, which has
been helping the performance and efficiency of CNNs, e.g.
BatchNorm [13] and MiniBatchSGD [7]. Despite the im-
proved effectiveness by those, one of the known open issues
is that CNNs are normally over-parameterized and would
demand a large-scale labeled dataset.

It is a common practice to exploit transfer learning which
adapts a model pre-trained on a source task to a new tar-
get task when given a small amount of labeled dataset.
Specifically, by leveraging the transferability of deep fea-
tures [39] one can map images to a middle or high-level
feature through pre-trained model and therewith train target
specific classifiers [4, 28, 40], which is often called feature
selection. It is also viable to fine-tune a source model for
the target data. As fine-tuning aims to optimize the entire
network for the target task, it often achieves higher effec-
tiveness and has therefore been a rule of thumb in CNN
transfer learning with a limited amount of domain data [1].
During fine-tuning, a source model needs to be mildly tuned
to avoid overfitting due to the fact that deep networks are yet
over-parameterized for small-scale target tasks.

One of the challenges during fine-tuning, which this pa-
per also addresses, is to achieve network regularization for
an over-parameterized model with limited training sam-
ples. In the recent state-of-the-art transfer learning solu-
tions, there is a trend of using an auxiliary training ob-
jective in a framework of multi-objective' learning for im-
proved regularization [6, 21, 20, 5]. These auxiliary objec-
tives are designed in a concrete and target-specific manner,
through which models would enforce certain desired prop-
erties that facilitates multiple purposes in the learned image
representations. The key to the enhanced regularization on
the target task is then attributed to the improved generality
learned from the imposed auxiliary objectives through par-
tial or entire source task data. However, the regularization
gain comes with a resource-dependent cost of the storage of
off-the-shelf predictions for multiple steps of network train-
ing [21], selecting qualified labeled data samples from the
source domain for a target task [6], using a complex net-
work architecture during training [5], or recalling the source
model [20].

From a network training perspective, as another way to
understand the regularization, a basic effect of training with

IFor ease of discussions, we do not distinguish training “objectives”
from “tasks”; thus, multi-objective and multi-task learning may be used
interchangeably.

13637



a regularization objective could be considered as to distract
the minimization of the empirical loss (typically, through a
structural loss). As a result, the regularization power can
also be seen to come from the extra gradients generated by
the employed distracting (regularization) objective. These
gradients cause useful distortions in the gradient-descent
trajectory to force the network to tolerate slightly higher
empirical loss in the course of training, which allows for
more chances in seeking better optima. Now, if such a dis-
traction effect is the essence to network regularization, it
is worthwhile to study whether the regularization objective
could have some alternative form rather than being a real
and concrete task.

Intuitively, if it is the distraction (rather than the conver-
gence of a regularization task) that is the primary interest,
there could be diverse ways to construct a distractor which
interferes the training of the target task while looking for an
improved regularization. One potential approach could be
through a pseudo-task which neither depends on the above
mentioned data and storage availability for multi-task learn-
ing, nor a concrete goal as designed in [0, 21, 20, 5].

In this paper, considering image classification tasks in
a transfer learning scenario, we aim to device a regular-
izer which generates distractions while being independent
of concrete tasks. Our regularizer simply exploits a pseudo-
task’ that injects random noise in the gradients to distract
the training on the target tasks, to seek for improvements.
Experimental results consistently support our conjecture on
various datasets and with different network architectures.
The contributions of this paper are:

1. We demonstrate Pseudo-task Regularization (PtR)
that provides an efficient alternative to other recent best
regularization based on real and concrete tasks.

2. In PtR, useful gradients for regularization are gener-
ated through a pseudo-task, in which we propose to
dynamically adjust the strength of the regularization
based on the gradient norms of the target objective and
the pseudo-task.

The results by those suggest a novel interpretation on the
key elements of network regularization for CNN transfer
learning, which we hope future research will exploit further
to identify the essential requirements for a regularizer.

2. Pseudo-task Regularization
2.1. Overview

Our motivation is to let a CNN learn the representa-
tions for a target task while also being distracted so that the

2Networks are never able to converge on the pseudo-task as it leverages
random regression targets, hence the name pseudo-task. See the details in
Sec. 2.2.
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Figure 1. An overview of the proposed Pseudo-task Regularization
(PtR). The path linking the blue modules illustrates a vanilla fine-
tuning pipeline with a target classifier trained by a cross-entropy
loss. The PtR loss, which is connected to the feature representation
layer of a CNN, is brought into the network training when the con-
vergence on target task is relatively stable. The total loss therewith
is the sum of cross-entropy loss on the target task and the weighted
PtR loss. The PtR loss module automatically weights the strength
of regularization according to the gradient norm of the target task
on the feature layer. The PtR is explained in Algorithm 1 in detail.

learned representations are not excessively target-task spe-
cific, leading to the loss of generality. For this purpose, as
shown in Figure 1, we choose to exploit a multi-task learn-
ing framework which utilizes two training objectives: one is
the cross-entropy loss for the target-task classification, the
other objective generates distractions to promote the gen-
eralization through a pseudo-regression task. We call it
Pseudo-task Regularization (PtR).

In using both of the training objectives, a significant as-
pect of PtR is to balance the impact of the two loss func-
tions. It is reasonable that the distraction should be on a
proper level which is not too strong and hinder model con-
vergence, nor is on an ignorable magnitude compared to the
gradients of the target classifier. To this end, inspired by [2],
we propose to dynamically balance the strengths of gradi-
ents from the two losses according to the gradient norms
with respect to the image representation during the training
process. The training procedure of our adaptive multi-task
learning framework is described in Algorithm 1.

2.2. Algorithm

Our method learns image representations on a target task
using a pre-trained model in an adaptive multi-objective
learning framework, as shown in Algorithm 1. For a train-
ing iteration ¢, it computes the cross-entropy loss nge)
and additionally the loss by the randomised regressor, the
Pseudo-task Regularization loss Lgl R Starting when L((fe)
falls below a certain threshold of average epoch loss T
(The choice of the threshold is not critical as explained
in Figure 2 of the supplementary.) Lgl R 1s calculated by
regressing the image representation to a pseudo-regression
target. In PtR, we use random regression targets generated
on-line such that:

L) = freg(rep™, 1), (1)

where rep stands for the activation of the representation
layer in a CNN, ¢ for pseudo-regression targets with an

13638



Algorithm 1: Training with Pseudo-task Regular-
ization
Source: a) Off-the-shelf net; b) Labeled data in
target domain
Procedure:
for iteration (batch) i do

Compute cross-entropy loss LEQ.

if L&? far from minimum then

‘ Back propagate LEQ only;
else
First, perform the following calculations:
1. Lg r : the pseudo-regression task loss,
w.r.t. the regression target ¢t(*) generated
on-line;
2. Gg? and G 1;1 r : the gradient norms of
L&e and ngm w.I.L. rep( 0 rep(i) stands for
the i 1mage representatlons of the batch;
3. éﬁ and G Pt r - the average of G and
Ggi g over the batch;m
4. Weight w: w = E(Cj;e

R PtR’
Then, back propagate Lgie) +w- Lg?&R'

for a target ratio

end

end

equal dimension as rep, and frc4(-) is a regression func-
tion for which we consider two popular choices: L2 loss
and “smooth-L1” (denoted by SMLI1) loss. Note that the
pseudo targets are randomly generated during training so
that the training instances are not bounded to the generated
regression targets. The details of these targets are described
in Section 3.1.
The total loss Li(to)tal is the weighted sum of the cross-
entropy loss and the regression loss:
L(Z)

total —

=LY +wL) s, 2)

where w is a coefficient to balance the impact of the distrac-
tion regressor, as explained below; LE? and the balanced
regression loss w - ng r are back propagated through the
network. Weight decay is omitted for conciseness.

To generate a proper level of distraction for regulariza-
tion, we first calculate the gradient norms of the cross-
entropy loss and those of the regression loss w.r.t. the out-
put feature for each instance, which are denoted by G£6 and
GS;% R > respectively (for brevity, the indexes of the training
instance in batch ¢ are omitted):

6LPtRH2
Orep(®

m,G%RfH

=l e 3

The gradient norms are then averaged over the batch as:

=(2) i (1) i

G.) =ElGY)). Crn=ElGpl @
In order to balance the relative impact of Lﬁ,} and Lgi R
we introduce a target gradient norm ratio R. It is defined
by the gradient norm ratio of the cross-entropy loss and a
desired regression loss in the form of signal-to-noise ratio:

R = écz, Jw é;t R Thus for the gradient norm ratio to

satisfy R at iteration ¢, L pyp heeds to be weighted by a

factor w: _
é(l)

Giin R

which is calculated on-line per batch before back propaga-
tion.

It is worth nothing that the common way of balancing
losses through a fixed weight (w) would not be an efficient
design choice for PtR, as it would never guarantee precise
regulation on the gradient norm for regularization. On the
contrary, with the use of a dynamic weight PtR is not bound
to a particular regularization (regression) loss.

®)

w =

2.3. Encouraging higher variance in gradients

To explore the impact to the gradients by using a ran-
domly varying regression target, we case-study a minimum
toy example network which is composed by one hidden
neuron (with non-linear activation) connected to one input
and one output. The single hidden neuron is denoted by
f, whose output f(°) is seen as the feature representation
learned by the example network. The input to f, denoted
by (9, is the product of an input z and its learnable weight
a on the input path. Thatis: f(°) = §(f®), f() =q -z, and
d(-) represents the ReLU function.

When a regression target ¢ is applied to f(°), the regres-
sion loss E,cq = %(f(") — t)2. During back propagation, if
neuron f is activated, the gradient on a by the chain rule is:

6E‘reg - aEreg ) 8f(o) ' af(l)
da — 0f©  9f@  da
[UO - (O -0 20,

- —(f(o) —t)-x, otherwise.

= f9 —t|-x
(6)

The variance of the gradient of a, if a simplified assumption
can hold that = being a constant, Var(ag% ), is determined

by that of £(°) and regression target ¢, such that
OF,
Var(weg) = Var(f) + Var(t), (7)

given that ¢ is a variable independent of f(°).
It can be seen that, if the regularization is achieved
through feature norm penalization (e.g., as proposed by
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[10]), t in Equation 6 equals a constant of 0. Consequently,
in Equation 7, the variance of gradients gets smaller com-
pared to using other regression targets which follow a cer-
tain distribution. PtR generates gradients with higher vari-
ance using an independent randomly-varying pseudo tar-
get. By leveraging them, PtR would explore more local op-
tima to yield higher chances in avoiding saddle points and
achieving stronger regularization.

3. Experiments and Results
3.1. Experimental Setup

Datasets. For transfer learning, training CNNs with data
across domains has been found to be an important regular-
ization method. However, our experiments focus on a situa-
tion where data of other domain is not available. We also fo-
cus on a challenging scenario where the training samples are
sparse. For this purpose, four commonly used small-scale
transfer learning datasets are selected to comparatively eval-
uate PtR: Flower102 [27], CUB200-2011 [35], MIT67 [30],
and Stanford40 [37], two of which represent fine-grained
classification tasks of different scenarios. Besides, we also
chose 500 identities® from the WebFace [38] dataset, de-
noted by “WebFace500”, to evaluate PtR when performing
transfer learning from image classification to closed-set face
identification with scarce samples per class. Caltech256 [8]
was also used for performance evaluation in a general image
recognition scenario.

On Flower102 we faithfully follow the data splits for
training and testing. On the WebFace500 dataset, each
identity has random 20 training images, five validation im-
ages, and on average 24 test images. Faces were segmented
and normalized to a fixed scale with a face detector [15]
before training. From Caltech256, we formed two inde-
pendent training sets with 30 and 60 training samples per
class, respectively, for consistency with [6, 20]. For other
datasets, 10% of the training images were randomly sepa-
rated to form the validation sets for model training.

Training and Evaluation. To augment the training im-
ages, we employed random jittering and subtle scaling and
rotation perturbations to the training images. We resized
images of all involved datasets to 250 x 250 pixels, and
the aspect ratio of the images was retained by applying zero
padding all the time. During test time, we averaged over the
network responses from the target-task classifiers over ten
crops which were sampled from the corners and the centers
of originals and the flipped counterparts.

As we consider the vanilla fine-tuning procedure as the
baseline, it is very important to ensure that the effectiveness
of vanilla fine-tuning is not underestimated. To this end,
we carefully selected learning rate schedules for fine-tuning

3Random 500 identities that have the most training instances on the
‘WebFace dataset.

to demonstrate the test accuracy on each dataset with each
type of network architecture. To conduct fair comparisons
to fine-tuning as much as possible, we also used the same
learning rates used by fine-tuning in our dynamic pseudo-
task regularization approach; the learning rate schedules
were slightly different due to the difference in converging
speeds. A learning rate was decreased when the valida-
tion loss and validation accuracy stopped progressing and it
was decreased twice before model training was terminated.
The models trained after the last epoch of their learning rate
schedules were always used for performance evaluations.

Implementation details. Experiments on different
datasets shared many common settings. We used the stan-
dard SGD optimizer with momentum set to 0.9. The batch
size was set to 20 to reduce overfitting as much as possible
(unless otherwise stated); weight decay was set to 0.0005
for VGG networks [31] and 0.0001 for ResNet [11] archi-
tectures except in a number of ablation studies. The dropout
ratio for VGG networks was set to 0.5. Our experiments
were implemented with PyTorch [29].

We always started the experiments from an ImageNet
[3] pretrained model. As the training data was visited ran-
domly, we ran five independent runs and average the re-
sults to mitigate the impact of randomness for all the ex-
periments. The classification accuracy was mostly used to
compare with related methods except [6].

Other hyperparameters to PtR. In the PtR, the impact
of the additional loss is adjusted primarily by the target gra-
dient norm ratio R that controls the interference gradient
magnitude. Then, the gradients with respect to each fea-
ture dimension are largely determined by the nature of a
pseudo-task which we employ in our experiments, such as
the distribution of pseudo-regression targets. Without loss
of generality we considered the random targets, ¢(*), fol-
lowing a uniform distribution with a mean value of m such
that m = E[t;l)]; i.e., for any single regression target t;z)
in ¢, tj(l) € [0,2m), where j is an instance in batch i
(j € [1,¢])) and |¢| is the batch size.

We used independent hold-out sets to efficiently deter-
mine R and m (to avoid expensive cross-validation param-
eter search): for ResNet structures R=3 and m=1 are con-
sistently used on all datasets; for the VGG-16 structure, R
varies in the range between 3 and 5, and m around 10 to
15. We chose T'=1 as a sensible setting in all the experi-
ments given that the influence by the choice of 7" is limited.
Details are given in Figure 2 of the supplementary.

3.2. Results and Comparisons

As the VGG-16 architecture has been used very com-
monly in many different transfer learning applications, we
first evaluate PtR with it across five different dataset using
SMLI1 and L2 for the regression function respectively, and
compare against the fine-tuning baseline. The results are
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Table 1. The comparative classification accuracy by the Pseudo-task Regularization (PtR), against vanilla fine-tuning (in column Baseline)
with two different choices of regression functions, SML1 and L2, with the VGG-16 architecture. The performance gain brought about by
PtR with different regression loss functions are in the two columns in the center under SML1 and L2, respectively. The corresponding error
rate reduction values are in the rightmost columns. The standard deviation of each experiment is given in parenthesis.

Regularization Gain

Error Rate Reduction

SML1

Baseline
Flower102 83.92% (0.36)
CUB200 75.07% (0.26)
MIT67 71.55% (0.38)
Stanford40 76.99% (0.19)
WebFace500  77.54% (0.52)

2.38% (0.32)
3.05% (0.39)
1.42% (0.58)
2.50% (0.09)
0.95% (0.56)

L2 SMLL1 L2
2.61% (0.42)  14.80% 16.23%
2.84% (0.37)  12.23% 11.39%
1.39% (0.40)  4.99% 4.89%
2.21% (0.16)  10.86% 9.60%
0.83% (0.47)  4.23% 3.70%

listed in Table 1.

It is observed that PtR helps improve the vanilla fine-
tuning on all the classification tasks tested with two dif-
ferent regression functions; it brings about reasonable and
consistent performance gain. On WebFace500 which con-
tains the most training samples, it reduced the error rate for
around 4%, but on Flower102 and CUB200 where the train-
ing samples are more sparse, it is particularly more effec-
tive and reduces the error rates for more than 10%. These
results suggest that, on the one hand, collecting more data
helps regularization even for small datasets. On the other
hand, when the training samples become sparse, PtR man-
ages to keep the learned representations from being exces-
sively target-task specific and further promises the networks
to learn more useful representations. The choice of regres-
sion function does not appear to be a significant factor as the
test accuracy with SML1 and L2 are close; SML1 is used in
all the following experiments.

We have also conducted a large number of com-
parative experiments to recent best performing multi-
task/objective based regularization approaches: Joint Train-
ing (JointTrain) [2 1], Learning without Forgetting (LWF)
[21], Borrowing Treasures from the Wealthy (BTfW) [0],
Inductive Bias (Ind.Bias) [20], and Pair-wise Confusion
(PC) [5]. In addition, we evaluated the regularization
through feature norm penalty (denoted by FNP) [10] in the
context of transfer learning (hyperparameters of FNP were
therefore set by using the same procedure of PtR for fair-
ness). We have also compared the impact of weight decay
on CUB200 and Caltech256 by disabling weight decay (de-
noted by “w/o WD”). As we intended to perform all ex-
periments on a single GPU module with 12GB memory,
the ResNet-101 was used as a compromise to compare to
the results achieved by a special memory-saving version of
ResNet-152 in [6]. For fair evaluations, all the correspond-
ing vanilla fine-tuning baseline and improved test accuracy
are shown in the following tables together with accuracy
gain.

The comparative results on CUB200 dataset are shown in
Table 2. It can be seen that the accuracy gain by PtR (with
VGG-16) is slightly better than JointTrain where real source
data was used for regularization; it also performs better than

LwF where off-the-shelf predictions were used. Compared
to FNP, PtR outperforms by a visible margin of 1.3%. Al-
though PtR achieved lower accuracy gain than PC, the gaps
is not significant regardless of network architecture (around
0.5%). For the absolute accuracy, it is also noticeable that
PtR achieved the highest baseline performance as well as
that of the optimized models among all the other methods.
Weight decay seems not impacting PtR, but the baseline ac-
curacy is 0.7% higher when training without it.

Table 2. Comparing classification accuracy on the CUB200
dataset. All the numerical results are in %. The network and other
settings (if any) used by each method are given in parenthesis.

Method Baseline  Acc.  Gain
JointTrain (VGG-16) 72.1 74.6 2.5

LwF (VGG-16) 72.1 72.3 0.2
PC(VGG-16) 73.3 76.5 3.2

PtR (VGG-16) 75.1 78.1 3.0

PC (ResNet-50) 78.2 80.3 2.1
FNP (ResNet-50) 80.3 80.6 0.3
PtR (ResNet-50) 80.3 81.9 1.6
PtR (ResNet-50, w/o WD) 81.0 82.0 1.0

On Flower102 dataset, as shown in Table 3, the gain by
PtR is larger than PC for 1.4% with the VGG-16 structure; it
is just equivalent to that of PC with the ResNet-50 network.
FNP brings some regularization margin, but it is 0.3% lower
than that of PtR. For PtR, it achieves consistent gain in ac-
curacy with ResNet-50 and ResNet-101, and the depth of
the network does not appear to deteriorate the regulariza-
tion effect. Although we achieved an equally good baseline
performance as BTfW (in parenthesis of the bottom row of
Table 3), the regularization gain of BTfW is higher than
PtR or any other methods. The difference in regularization
may suggest that training with sufficient labeled data in a
multi-task learning framework is a stronger regularization
for transfer learning.

Similar observations can also be found from the results
on MIT67 dataset, as shown in Table 4. With the VGG-
16 architecture, regularization effect by PtR is again very
close to that of JointTrain and outperforms LwF. With the
ResNet, the regularization gain by PtR is equivalent to that
of Ind.Bias and FNP. BTfW also achieves higher gain than
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Table 3. Classification accuracy and accuracy gain (in %) compar-
isons on the Flower102 dataset. The mean class accuracies used to
compare to BTfW [6] are listed in parenthesis.

Method Baseline Acc. Gain
PC(VGG-16) 85.2 86.2 1.0
PtR (VGG-16) 83.9 86.3 24
BTfW (ResNet-152) 92.3 94.7 24
PC (ResNet-50) 92.5 93.5 1.0
FNP (ResNet-50) 91.0 91.5 0.5
PtR (ResNet-50) 91.0 91.8 0.8
PtR (ResNet-101) 90.6(92.3) 91.6(93.2) 1.0(0.9)

Table 4. Comparative results on the MIT67 (in %). The mean class
accuracies used to compare to BTfW [0] are in parenthesis.

Method Baseline Acc. Gain
JointTrain (VGG-16) 74 75.5 1.5
LwF (VGG-16) 74 74.7 0.7
PtR (VGG-16) 71.6 73.0 14
BTfW (ResNet-152) 81.7 82.8 1.1
Ind.Bias (ResNet-101) 71.5 78 0.5
FNP (ResNet-50) 77.4 78.0 0.6
PtR (ResNet-50) 77.4 77.9 0.5
PtR (ResNet-101) 78.7(78.7)  79.2(79.2)  0.5(0.5)

the other methods with ResNet. We would infer that op-
timizing a network simultaneously on multiple tasks with
sufficient selected real data samples might be more effec-
tive than other related methods. As for PtR, it brings about
consistent margin over the fine-tuning base-line regardless
of the depth of ResNet architecture, which also coincides
with the results in Table 3.

The results on Caltech256 dataset are in Table 5. In these
experiments, we increased the batch size to 32, which is a
value in between of those used by [6, 20], to make fair com-
parisons as much as possible. Interestingly, we achieved
the best baseline accuracy among all the comparing meth-
ods with both of the Caltech256 partitions. Consequently,
it could be harder for PtR to demonstrate the regulariza-
tion power in comparison to others because a better gener-
alized baseline usually has a smaller room to improve the
generalization. However, we can still observe some similar
trends. First, as in the previous experiments, by training a
network with sufficient annotated data of multiple classes,
BTfW achieves the best regularization gain (around 2.6%
with both setups). Second, PtR consistently delivers regu-
larization gain; for both data splits the gains are equivalent,
which indicates that PtR would not be so sensitive to the
size of training data of each category. The improvement
brought about by FNP might be marginal or even unstable
given the negative gain on Caltech256-30. The impact of
weight decay on the classification accuracy of PtR is not
visible.

Through the analysis of the comparative results, we ar-
gue that PtR delivers consistent gains, with statistical sig-

Table 5. Mean class accuracies and accuracy gains (in %) on the
Caltech256 with two partitions of training data. Bsln is short for
baseline. Mean class accuracies were the same as the average clas-
sification accuracy over the test set, thus are not given in parenthe-
sis in this table. BTfW [6] was using ResNet-152 while others
were using ResNet-101. The network used by each method is not
shown in this table for brevity.

Caltech256-30 Caltech256-60

Method Bsln.  Acc.  Gain Bsln.  Acc.  Gain
BTfW 81.2 83.8 2.6 86.4 89.1 2.7
Ind.Bias 81.5 83.5 2.0 85.3 86.4 1.1
FNP 84.0 83.8 -0.2 86.8 86.9 0.1
PtR 84.0 84.5 0.5 86.8 87.2 0.4
PtRw/oWD 840 845 0.5 86.9 87.2 0.3

nificance (also see the standard deviation given in Table 1
in the supplementary), which are on a par with the recent
state-of-the-art approaches. The compared methods con-
sider using auxiliary objectives attached to concrete tasks
while enhancing regularization, but PtR which leverages an
additional pseudo-task as a regularizer is free from design
of concrete auxiliary tasks and more straightforward. Com-
pared to LwF, the “warmup” training stage and collecting
predictions of the target data from an off-the-shelf model is
not required by PtR. It is not needed for PtR to remember
the “starting point” parameters of an off-the-shelf model as
in [20]. PtR is also more efficient than [5] which requires a
Siamese network, and it does not depend on annotated data
from other domain either as in [0].

4. The Effect of PtR on Predictions

To investigate the impact of PtR, we case-study on the
validation set of the CUB200 dataset with ResNet-50 net-
work to explore how the predictions have been altered in
comparison to those from vanilla fine-tuning. We base our
analysis on the concept of confusion matrix and define a
matrix CP*P) (D=200), each row of which contains cu-
mulative predicted probabilities across all the validation
samples for different class categories. We compute matri-
ces Cp:r and Cy, for the cases of using PtR and baseline
fine-tuned model, respectively. We then sum their diagonal
elements into:

Spir = »_ Diag(Cpir), Sp =Y Diag(Cp). (8)

Feeding in 584 validation images, we had Sp;r = 425 and
S+ =404, which indicates that the pseudo-task regularized
model shows more certainty in the correct classes on av-
erage than the fine-tuned model. Furthermore, in terms of
the average entropy of the predictions, the pseudo-task reg-
ularizer reduced it from 1.33 to 1.15 bits. This is due to
better regularization that allows the model to eliminate mi-
nor probabilities in false predictions, which in turn reduced
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Input: 171.Myrtle_Warbler
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Figure 2. A sample from the validation set of CUB200 that PtR correctly rectified mis-classification caused in the vanilla fine-tuning.
Left: An input image. Middle: Categorical distributions made by the baseline model and PtR. The second largest prediction made by FT
baseline model is around 30% for Class 171. Right: Two randomly picked training samples of the class predicted by the baseline (top) and

two samples of the class predicted by PtR (bottom).

the average entropy. The reduction of entropy also implies
that the class predictions have been disambiguated by PtR.

Correspondingly we computed S, ; and S%,, the sum of
off-diagonal elements of Cp:r and C ¢, respectively. We
observed that the regularized model tends to make predic-
tions with fewer minor probabilities than the vanilla fine-
tuning model. It gives higher certainty to its predictions
on the ground truth class given the smaller S, ;;, which is
consistent with the reduced entropy in comparison to vanilla
fine-tuning.

To further qualitatively study how the predictions made
by the vanilla fine-tuning model (baseline) have evolved by
PtR, we case study two types of input samples for which:

i) PtR rectified the baseline model’s errors, and

ii) PtR mis-classified on the contrary to the baseline.
Namely, 1) is true rectification and ii) is false rectification.
Two of these examples are compared in Figure 2 and 3.

It can be seen that PtR has an effect of encouraging the
predictions of the instances of other classes which are vi-
sually close to the ground truth class*. This indicates that
the pseudo task regularizer implicitly helps the network fo-
cus on and learn to distinguish classes of higher visual sim-
ilarity, and hence helps the classification accuracy overall
(for around 1% on CUB200’s validation set). At the same
time, from our observations, PtR does not tend to produce
so many minor probabilities on other classes which are less
similar as the baseline model does. This aids the regular-
ized model to suppress the uncertainties and focus on a few
most similar candidate classes.

5. Related Work

Regularization methods that are commonly used for fine-
tuning CNNs can be generally grouped into four categories:
data perturbation, parameter norm penalty, dropout, and

“In Figure 2, the second largest prediction made by PtR is at another
class of similar appearance; in Figure 3, the wrongly predicted class is also
similar to the ground truth.

multi-task learning. Image augmentation as a popular form
of image perturbation has been proven to be particularly
useful to prevent CNNs from overfitting. In this paper, we
also assume to perturb our training instances by random
augmentations. The supervision signal can be perturbed for
better regularization as well. This can be achieved by learn-
ing to predict soft targets rather than hard binary ones as
in [36]. In this work, label perturbation is not considered so
that we can deliver more ablated studies on the effectiveness
of auxiliary training objectives.

The parameter norm penalty, or weight decay more
specifically, has been one of the most common ways of
regularization in training deep models. Our PtR leveraged
weight decay by default, but we also evaluated PtR with-
out weight decay to study its impact on accuracy. Another
method being apparently similar to weight decay is to use
feature norm penalty (FPN) or feature contraction on the
representation layer of a network [10, 19, 25]. Superficially,
FNP would resemble to PtR if the regression target for PtR
was towards a static norm of zero without involving ran-
domness. (An additional feature of PtR which should be
noted is that it also balances objectives automatically. See
Section 2.3 for the technical difference.) Dropout is also
one of the standard techniques to improve model regulariza-
tion by temporarily shielding a part of the hidden units in the
bottleneck layer and fully connected layers during training
[32, 26]. For the VGG-16 structures which we employed in
our experiments, dropout was also used after flattened hid-
den layers.

A more recent approach of regularization in trans-
fer learning has been to train CNNs with an auxiliary
task/objective through multi-task learning [21, 6]. These
objectives in the recent best performing methods are often
designed with the expectation that more generic features are
less likely to overfit to the target task in a few different ways.
In [6], the network was simultaneously trained by the tar-
get data and a number of selected source data samples that
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Figure 3. A sample from the validation set of CUB200 that the standard fine-tuning correctly classified but PtR wrongly predicted. See

also the caption of Figure 2.

are similar to the target data when viewed in low-level fea-
tures. Another way to encourage CNN regularization, in-
stead of relying on the availability of foreign data, was to
let the model stay not too far from the original structure of
the model trained by a large source task. As demonstrated
by [21], one can attempt to retain the predictions of the tar-
get domain images made by the off-the-shelf source model
while learning on the new target task (we acknowledge that
the original intention of doing so in [21] was not for regu-
larization). It is therefore reasonable to interpret the use of
off-the-shelf predictions as implicitly using the source do-
main training data. The other way to make the trained mod-
els attracted to the original model was to explicitly force
the target model being trained to stay in a vicinity of the
source model in the weight space; the work in [20] lever-
aged the inductive bias in a fine-tuning scenario to prevent
the learned features from becoming overly specific.

For fine-grained vision tasks, a very recent approach [5]
suggested to “confuse” the network by encouraging dif-
ferent class-conditional probability distributions to come
closer together, thus reducing the inter-class distance. In
the cases where only style transfer is considered, one can
attempt to reduce the domain variance through certain met-
rics (i.e., perform domain adaptation) as in [34, 24].

A common aspect of these aforementioned regularizers
is that they depend on a concrete task or objective. But since
they are not purposed for explicitly optimizing the target
objective, they can all be largely seen as “distractors”. The
approach studied in this paper also causes distractions, but
we suggest that a distractor could work equally effectively
without involving a concrete auxiliary objective or any form
of source domain data as supervision labels.

6. Conclusions and Discussions

We have introduced a Pseudo-task Regularization (PtR)
which leverages a multi-task learning framework to gen-
erate useful interference by a pseudo-regression task, for
improving regularization for transfer learning with limited

data samples. The regularization effect from PtR is dynamic
in that PtR adjusts the strength of the regularization based
on the gradient norms of the target objective and the pseudo-
task. Unlike existing approaches, PtR does not depend on
a concrete or real regularization objective. Surprisingly, we
observed that the performance gain brought about by the
simple PtR was on a par or better than the related recent so-
lutions, and therefore we suggest that PtR is available as an
efficient alternative to recent best performing regularization
methods that are based on concrete objectives.

We attribute the generalization gain from PtR to two as-
pects while a widely recognized theory on DNN general-
ization is yet to be established [14, 42]. First, the gradient
noise generated by PtR in SGD makes batch-wise gradients
noisier and results in smaller equivalent batch size in that
respect. The resulting increased quotient of learning rate
and (equivalent) batch size have been shown helpful to es-
cape sharp minima [14, 17]. The nosier gradients prolongs
training which could in turn encourage networks exploring
more and better local minima, hence class disambiguation.
Second, the superiority of anisotropic noise of SGD over its
isotropic counterpart has been demonstrated [42], and the
anisotropic gradient noise generated by PtR could increase
the chance to find flatter minima.

Furthermore, it will be also interesting to study the im-
pact of PtR on the calibration performance of the network
[9], and how PtR’s gradients interact with those of the base-
line as in [41]. This is however beyond the scope of the cur-
rent work as well as the above mentioned relation to the loss
landscape — those are among the topics for future research.
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