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Abstract

Machine learning models are vulnerable to adversarial

examples. For the black-box setting, current substitute at-

tacks need pre-trained models to generate adversarial ex-

amples. However, pre-trained models are hard to obtain in

real-world tasks. In this paper, we propose a data-free sub-

stitute training method (DaST) to obtain substitute models

for adversarial black-box attacks without the requirement of

any real data. To achieve this, DaST utilizes specially de-

signed generative adversarial networks (GANs) to train the

substitute models. In particular, we design a multi-branch

architecture and label-control loss for the generative model

to deal with the uneven distribution of synthetic samples.

The substitute model is then trained by the synthetic samples

generated by the generative model, which are labeled by

the attacked model subsequently. The experiments demon-

strate the substitute models produced by DaST can achieve

competitive performance compared with the baseline mod-

els which are trained by the same train set with attacked

models. Additionally, to evaluate the practicability of the

proposed method on the real-world task, we attack an on-

line machine learning model on the Microsoft Azure plat-

form. The remote model misclassifies 98.35% of the adver-

sarial examples crafted by our method. To the best of our

knowledge, we are the first to train a substitute model for

adversarial attacks without any real data. Our codes are

publicly available 1.

1. Introduction

Deep neural networks have been shown vulnerable to ex-

amples with imperceptible perturbations [38]. This causes

researchers a high interest in studying attacks and defenses

for assessing and improving the robustness of networks.

Adversarial attack methods can be categorized into two

main attacks, white-box attacks that have full access to the
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attacked model and black-box attacks that have partial in-

formation of models.

Black-box attacks are more practical in real world sys-

tems compared with white-box attacks. Among these at-

tacks, score-based attacks [8, 19, 20, 16] and decision-based

attacks [3, 9, 7] directly attack the attacked model using

class probabilities or hard labels returned by the attacked

model. These attack methods do not need a pre-trained

substitute model, however, as a cost, they need numerous

queries for attacked models to generate each attack.

Instead, gradient-based attack methods [14, 22, 35, 30]

need knowledge of the architecture and weights of the at-

tacked models. Goodfellow et al. [14] showed that adver-

sarial examples have the property of transferability which

means that adversarial examples generated for one model

through white-box attack methods can also attack other

models. Therefore, to carry out attack methods in the black-

box setting, they use a substitute model to find the adversar-

ial examples and then attack the machine learning model

based on the transferability of these adversarial examples.

Compared with current score-based and decision-based at-

tacks, the substitute attacks do not need queries for gen-

erating adversarial examples. However, they need a pre-

trained model to generate adversarial attacks. Papernot et

al. [34] developed a method that uses a number of images

to imitate the outputs of attacked models to obtain substi-

tute networks. Prediction APIs were also developed to steal

the machine models [39]. Orekondy et al. [32] proposed a

”knockoff” to steal the function of machine learning mod-

els. These methods do not need a pre-trained model but re-

quire many real data labeled by the attacked model to train

a substitute model. However, the real images are hard to get

in some real-world tasks. Therefore, it is important to de-

velop a data-free substitute attack, such that the risks faced

by current machine learning models can be assessed more

comprehensively.

In this study, we propose a data-free substitute training

(DaST) method to train a substitute model for adversarial at-

tacks. We utilize generative adversarial networks (GANs) to

create synthetic samples to train the substitute model. The
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substitute model uses these samples to train, where the la-

bels of the samples are produced by the attacked model. For

the performance, the synthetic samples should be equally

distributed in the input space. The label of samples should

span all categories. However, conventional GANs without

real data may generate samples that have extremely uneven

distribution and only contain few categories, which means

the substitute model cannot learn the classification charac-

teristics of the attacked model comprehensively.

To address this problem, we design a multi-branch archi-

tecture and a label-control loss for the generative model to

deal with the uneven distribution of synthetic samples. The

generative model can produce synthetic samples with ran-

dom labels given by the attacked model. As such, the sub-

stitute model can learn the classification characteristics of

the attacked model in this adversarial training and produce

adversarial examples which have strong transferability for

the attacked model. The main contributions of this study

are summarized as follows:

• We are the first to train a substitute model for adver-

sarial attacks without any real data. Attackers can use

this method to train a substitute model for adversarial

attacks without collecting any real data.

• We evaluate the effectiveness of DaST on both local

deep learning models and the online machine learning

system, which reveals a fact that the current machine

learning model has significant risks to be attacked.

• we evaluate the performance of our method in two at-

tack scenarios, including a probability-only scenario

that attacker can access the output probability of the

attacked model, and a label-only scenario that attacker

only accesses the output label of the attacked model.

Our method generates adversarial examples efficiently

on both scenarios.

In addition, we use different model architectures for the

substitute model to test the influence on attack success rate

caused by the model capacity.

The rest of our paper is organized as follows: in section

2, we introduce the related works. The proposed method

is described in section 3. We evaluate the performance of

DaST in section 4.

2. Related Works

Adversarial Scenes Adversarial attacks are carried out

in the white-box setting or the black-box setting. In the

white-box setting, the attacker has access to the structure

and weights of the attacked models. On the contrary, in the

black-box setting, the attacker only has the substitute model

(gradient-based attacks) or access the outputs returned by

the attacked models (query-based attacks). Black-box at-

tack methods are more practical on real tasks.

Adversarial Attacks Gradient-based attacks such as

FGSM [14] and BIM [22] have full access to the models, so

they usually use a pre-trained substitute model to generate

adversarial examples, and then attack the attacked model

using the transferability of adversarial examples. FGSM

aims to find adversarial examples by directly increasing the

loss of the model, BIM is an iterative version of FGSM.

Likewise, DeepFool [30] finds adversarial examples that

are likely to cross the decision boundary. To find pertur-

bations with minimal `p norm, Nicholas Carlini and David

Wagner [6] introduced a method to craft these perturbations

through simultaneously minimizing the perturbations. Sim-

ilar to this method, Rony et al. [36] also constrain the `2

norm of the perturbations, they decoupled the value and di-

rection of the perturbation. In the black-box setting, these

attacks rely on the transferability of adversarial examples.

However, Liu et al. [25] showed that these examples nearly

have no transferability on attacked attacks. Instead, Cheng

et al. [8] proposed a score-based attack method zeroth order

based attack (ZOO) using gradient estimation, and Ilyas et

al. [20] improve the way of the gradient estimation. Instead

of gradient estimation, Guo et al. [16] introduced a simple

black-box attack (SimBA) which decides the direction of

the perturbations based on the changes of output probabil-

ity. Brendel et al. [3] first proposed a decision-based attack.

Based on this method, Cheng et al. [9] and Cheng et al. [7]

improved the query efficiency, which is an important metric

for black-box attacks.

Adversarial Defenses Several defense methods for in-

creasing the robustness of models have been proposed. Ad-

versarial training [38, 27, 23, 40] modifies the training

schemes of the models, they directly train with the adver-

sarial examples. Another method aims to modify the ad-

versarial examples themselves such as random transforma-

tion [22, 28, 41]. Buckman et al. [4] proposed a nonlinear

transformation based on one-hot encoding to inputs of mod-

els. Gradient masking methods [40, 10] destroy the gra-

dient information so that they fail the optimization-based

attacks. However, these defense methods based on gradi-

ent masking have been showed unreliable [1], and mod-

els with defenses above are still unsafe against some at-

tacks [5, 17]. Besides, detecting adversarial examples raises

the interest of researchers. Some of them detect the exam-

ples of whether they are adversarial or clean by an auxiliary

network [13, 15, 29], while some find out adversarial exam-

ples through their statistical properties [2, 18, 12, 26, 33].

3. Method

In this section, we describe the attack scenario in this

study, then introduce the substitute attack and propose a

data-free method to train the substitute model.
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3.1. Attack Scenario

Label-only scenario Suppose the attacked machine

learning model is employed online and attackers can freely

probe the output labels of the attacked model. The attack-

ers are hard to obtain any data which is in the input space

of the attacked model. We name the proposed DaST on the

label-only scenario as DaST-L.

Probability-only scenario The other settings of this sce-

nario are the same as the label-only scenario, but attackers

can access the output probability of the attacked model. We

name the proposed DaST on the probability-only scenario

as DaST-P.

3.2. Adversarial Attack

In this subsection, we introduce the definition of adver-

sarial substitute attacks.

X denotes samples from the input space of the attacked

model T . ȳ and y0 refers to the real labels and the target

labels of the samples X, respectively. T (y|X, ✓) is the at-

tacked model parameterized by ✓. For non-targeted attacks,

the objective of the adversarial attack can be formulated as:

min
✏

k✏k subject to argmax
yi

T (yi|X=X+✏, ✓) 6= ȳ

and k✏k  r.
(1)

For targeted attacks, the objective is:

min
✏

k✏k subject to argmax
yi

T (yi|X=X+✏, ✓) = y0

and k✏k  r,
(2)

where the ✏ and r are perturbation of the sample and upper

bound of the perturbation, respectively. For attacking the

machine learning system which is hard to detect, r is set

to a small value in attack methods. X = X + ✏ are the

adversarial examples which can lead the attacked model T
to output a wrong label (non-targeted setting) and a specific

wrong label (targeted setting).

For white-box attacks, they can fully access the gradient

information of T , then use it to generate adversarial exam-

ples to attack the T . For black-box substitute attacks, they

train a model bT to substitute the attacked model to gener-

ate adversarial examples and then transfer the examples to

attack the T . The attack success rate of these black-box at-

tacks heavily relies on the transferability of the adversarial

examples. Therefore, the key point of developing an ef-

ficient substitute attack is to train a substitute model hav-

ing properties that are as similar as possible to the attacked

model. Current attack methods utilize the same training set

of the attacked model or collect a lot of other images labeled

by the attacked model to train the substitute model. In the

next two subsections, we will introduce a method that can

train a substitute model without any image. The whole pro-

cess is shown in Figure 1.

3.3. Adversarial Generator-Classifier Training

In this subsection, we introduce the basic adversarial

training method and discuss its limitation.

For training the substitute model without any image, we

use a generative model G to produce training data for the

substitute model D. The generator randomly samples the

noise vector z from the input space and produces the data
bX = G(z). Then, the generated data is used to probe the

output T (bX) of the attacked model T . The substitute model

is trained by the image-output pair (bX, T (bX)). As shown

in Figure 1, the objective of G is to create new samples to

explore the difference between T and D, and the role of

D is to imitate the output of T . It is a special two-player

game, the attacked model involved in this game is a referee.

To simplify the expression but without loss of generality,

we utilize the binary classification as a case to analyze (the

output probability can be considered as one scalar in binary

classification, so does the output label). The value function

of the game is presented as:

max
G

min
D

VG,D = d(T (bX), D(bX)) (3)

where d(T (bX), D(bX)) is a metric to measure the output

distance between T and D. For label-only attack scenario,

this measurement can be formulated as:

d(T,D) = CE(D(bX), T (bX)), (4)

where D(bX) and T (bX) in this scenario denote the out-

put labels of the substitute model and those of the attacked

model, respectively. CE(D(bX), T (bX)) denotes the cross

entropy loss, and the output labels of T are utilized as the la-

bel of this loss. The function of cross entropy loss is to con-

strain the difference between the T and D. For probability-

only attack scenario, this measurement is formulated as:

d(T,D) = kD(bX), T (bX)kF , (5)

where D(bX) and T (bX) in this scenario denote the output

probabilities of the substitute model and those of the at-

tacked model, respectively.

Hence the substitute model D replicates the informa-

tion of attacked model T by this adversarial training. In

the training, the loss function of D is set to LD = VG,D.

In order to maintain the stability of training, the loss func-

tion of G is designed as LG = e�d(T,D). Therefore, the

global optimal substitute network D is obtained if and only

if 8 bX, T (bX) = D(bX). At this point, LD = 0 and

LG = e0 = 1.
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Figure 1. The proposed adversarial data-free imitation. The architecture of G is shown in the blue dotted block. N denotes the number of

categories. In the training stage, the objective of G is to generate samples bX = G(X) and let yD(bX) 6= yT (bX). The objective of D is to

guarantee yD(bX) = yT (bX). In the testing stage, the substitute model D is utilized to generate adversarial examples to attack T .

We suppose that 8 bX = G(z), bX 2 R, R is the input

space of T . If the D can achieve D(bX) = T (bX), the adver-

sarial attacks carried out by our substitute model will have

the same success rate as the white-box attack without the

gradient information of T . Therefore, for a well-trained

substitute network, adversarial examples generated by D
have strong transferability for T .

However, it is impossible to guarantee that D(bX) =

T (bX) in a limited time. If we do not constrain the output of

G, the synthetic training data for T is likely only distributed

in a small range of R, thus this training cannot work. For

addressing this problem, we design a label-controllable ar-

chitecture for G, which can control the distribution of syn-

thetic data and speed up the convergence of training.

3.4. Label-controllable Data Generation

In this subsection, we introduce the label-controllable ar-

chitecture for the generative model G.

To obtain equally distributed synthetic data to train the

substitute model D, we consider developing a method that

can control the distribution of bX. For training a replication

of T , the synthetic data is used to probe the information of

the attacked model. The label of samples, which is pro-

duced by the attacked model, should span all categories.

Therefore, as shown in the blue dotted box of Figure 1,

we design a generative network which contains N upsam-

pling deconvolutional components, N is the number of cate-

gories. All upsampling components share a post-processing

convolutional network. The model G randomly samples the

noise vector z from the input space and variable label value

n. The z is then entered into the n-th upsampling decon-

volutional network and the shared convolutional network to

produce the data bX = G(z, n). The additional label-control

loss for generative model G is formulated as:

LC = CE(T (G(z, n)), n). (6)

The above method generates data with random labels,

which are produced by T . However, the backpropagation of

this label-control loss needs the gradient information of the

attacked model T , it violates the rules of black-box attacks.

We need to train a label-controllable generative model with-

out the gradient information of T . For the imitation process,

it can be approximated as the following objective function:

min
D

d(T (bX), D(bX)). (7)

In the training progresses, the outputs of D will grad-

ually approach the outputs of T under the same inputs.

Therefore, we use D to replace the T in Eq. (6), which

is formulated as:

LC = CE(D(G(z, n)), n). (8)

The training of substitute D can avoid accessing the infor-

mation of T . Then we update the loss of G as:

LG = e�d(T,D) + ↵LC , (9)

where ↵ controls the weight of label-control loss (we set it

to 0.2 in our experiments).

In the training stage, as the imitation ability of D in-

creases, the diversity of synthetic samples which is labeled

by the T will enhance. Therefore, the D can learn the in-

formation of the attacked model T , which can improve the

transferability of adversarial examples generated by D. We
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Algorithm 1 Mini-batch stochastic gradient descent

training of the proposed method DaST.

# acc denotes the accuracy of D. att denotes the attack

success rate for the attacks generated by D.

1 : While iteration < � or acc, att do not increace

2 : Generate m examples{bX(1), . . . , bX(m)}by G.
3 : Update the substitute model :

4 : LD = d(T (bX), D(bX)).
5 : Update the generative model :
6 : LG = e�d(T,D) + ↵LC .
7 : end for

name this method as data-free substitute training (DaST),

which is shown in Algorithm 1.

Like the current substitute attack methods, the substitute

model trained by our method is utilized to generate adver-

sarial examples to attack T .

4. Experiments

4.1. Experiment Setting

In this subsection, we introduce our experiment settings,

including the datasets, model architectures, attack methods,

and evaluation criteria.

Dataset: we evaluate our proposed method on MNIST

[24] and CIFAR-10 [21]. The test sets of these two datasets

have 10k images, respectively.

Scenario: we evaluate our method in both label-only at-

tack and probability-only scenario. The DaST-L and DaST-

P denote the DaST in the label-only scenario and DaST in

the probability-only scenario, respectively. Attackers in the

scenarios of this study can freely access the output of the

attacked model. Therefore, we obtain the substitute model

trained by DaST when the algorithm convergence.

Model architecture and attack method: the substitute

network has no prior knowledge of the attacked model,

which means it does not load any pre-trained model in ex-

periments. For the experiments on MNIST, we design 3 dif-

ferent network architectures including a small network (3

convolutional layers), a medium network (4 convolutional

layers) and a large network (5 convolutional layers) for eval-

uating the performance of our DaST with models having

different capacity. We utilize the pre-trained medium net-

work and VGG-16 [37] as the attacked model on MNIST

and CIFAR-10, respectively. In addition, we use different

architectures for the substitute model and attacked model

to evaluate the impact of model structure on our method in

CIFAR-10 experiments. In order to compare the substitute

model produced by DaST with the pre-trained models, we

utilize 4 attack methods to generate adversarial examples,

which include FGSM [14], BIM [22], projected gradient

Table 1. Performance of the proposed DaST on MNIST. “Pre-

trained”, “DaST-L” and “DaST-P”: the attack success rate (%) of

adversarial examples generated by the pre-trained large network

and DaST-L and DaST-P, respectively. ( ) denotes the average LF

perturbation distance per image.

Attack
Non-targeted

Pre-trained DaST-P DaST-L

FGSM [14] 59.72 (5.40) 69.76 (5.41) 35.74 (5.40)

BIM [22] 85.70 (4.80) 96.36 (4.81) 64.61 (4.82)

PGD [27] 37.93 (3.98) 53.99 (3.99) 23.22 (3.98)

C&W [6] 23.34 (2.91) 27.35 (2.74) 18.16 (2.75)

Attack
Targeted

Pre-trained DaST-P DaST-L

FGSM [14] 12.10 (5.46) 20.45 (4.49) 13.10 (5.46)

BIM [22] 37.83 (4.90) 57.22 (4.87) 29.18 (4.87)

PGD [27] 28.95 (4.60) 47.57 (4.63) 19.25 (4.63)

C&W [6] 10.32 (2.57) 23.80 (2.99) 12.31 (2.98)

descent (PGD) [27], C&W [6]. For testing, we use Ad-

verTorch library [11] to generate adversarial examples. For

evaluating performances of the proposed method in real-

world tasks, we apply our attack to the online MNIST model

of Microsoft Azure. The training tricks and machine learn-

ing methods utilized by this online model cannot be ac-

cessed.

Evaluation criteria: for evaluating the performance of

our DaST, we set the attack success rates of adversarial ex-

amples generated by other pre-trained networks as the base-

line. The goals of non-targeted attacks and targeted attacks

are to lead the attacked model to output wrong labels and

specific wrong labels, respectively. In the non-targeted at-

tack scenario, we only generate adversarial examples on the

images classified correctly by the attacked model. In tar-

geted attacks, we only generate adversarial examples on

the images which are not classified to the specific wrong

labels. The success rates of adversarial attack are calcu-

lated by n/m, where n and m are the number of adversarial

examples which can fool the attacked model and the total

number of adversarial examples, respectively.

4.2. Experiments on MNIST

In this subsection, we employ the proposed DaST to train

a substitute model for adversarial attacks on the MNIST

dataset and evaluate the performance in terms of attack suc-

cess rate in label-only and probability-only scenarios.

First, we conduct experiments to evaluate the perfor-

mance in probability-only and label-only attack scenarios.

We use the medium network as the attacked model on

MNIST and the large network as the substitute model of

DaST. We train a pre-trained large network on the same

train set of the attacked model. We utilize the attack success
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Table 2. Performances of the proposed DaST with three different

substitute architectures on MNIST. “Small”, “Medium” “Large”:

the attack success rates (%) of adversarial examples generated by

DaST with small, medium and large substitute networks, respec-

tively. ( ) denotes the average LF perturbation distance per image.

Attack
Non-targeted

Small Medium Large

FGSM [14] 62.61 (4.38) 56.21 (4.45) 69.76 (5.41)

BIM [22] 94.86 (4.85) 92.47 (4.84) 96.36 (4.81)

PGD [27] 45.31 (3.99) 43.62 (3.99) 53.99 (3.99)

C&W [6] 30.61 (2.89) 24.34 (2.75) 23.80 (2.99)

Attack
Targeted

Small Medium Large

FGSM [14] 19.92 (4.43)) 20.45 (4.49) 23.93 (5.45)

BIM [22] 56.73 (4.89) 53.50 (4.84) 57.22 (4.87)

PGD [27] 39.42 (4.64) 40.76 (4.60) 47.57 (4.63)

C&W [6] 24.86 (3.09) 16.25 (3.13) 23.80 (2.99)

rate of adversarial examples generated by the pre-trained

model as the baseline. The performances of our DaST are

shown in Table 1. The substitute model trained by DaST-

P and DaST-L achieve 97.82% and 83.95% of accuracy on

the test set, respectively. The attack success rates of the sub-

stitute model produced by our DaST are higher than those

of the pre-trained model on non-targeted (10.04%, 10.66%,

16.06%, and 4.01% higher on FGSM, BIM, PGD, and

C&W, respectively) and targeted attacks (11.83%, 19.39,

18.62, 13.48% higher on FGSM, BIM, PGD, and C&W,

respectively). It shows that the substitute model generated

by DaST-P outperform the models trained by the same train

set (60000 images) with the attacked model. Even he substi-

tute models trained by DaST-L perform better than baseline

models on FGSM and C&W attacks (targeted).

Then we evaluate the performances of our DaST with

different substitute architectures in the probability-only sce-

nario. We also use the medium network as the attacked

model on MNIST and apply our DaST using three different

substitute architectures, which include the large, medium

and small networks. The attack success rates of these three

substitute architectures are shown in Table 2. The large sub-

stitute model achieves the best results on FGSM, BIM, PGD

attacks compared with other models. The small substitute

model obtains the best results on C&W attacks compared

with other models. It shows that both architectures for the

substitute model obtain good results on adversarial attacks.

In general, the substitute models with more complex struc-

ture can obtain better performance for adversarial attacks.

4.3. Experiments on CIFAR-10

In this subsection, we employ the proposed DaST to train

a substitute model for adversarial attacks on the CIFAR-

Table 3. Performance of the proposed DaST on CIFAR-10. “Pre-

trained”, “DaST-P” “DaST-L”: the attack success rates (%) of ad-

versarial examples generated by the pre-trained large network,

DaST-P and DaST-L, respectively. ( ) denotes the average LF per-

turbation distance per image.

Attack
Non-targeted

Pre-trained DaST-P DaST-L

FGSM [14] 39.10 (1.54) 39.63 (1.54) 22.65 (1.54)

BIM [22] 59.18 (1.01) 59.71 (1.18) 28.42 (1.19)

PGD [27] 35.40 (1.02) 29.10 (1.10) 17.80 (1.10)

C&W [6] 9.76 (0.77) 13.52 (0.74) 10.34 (0.74)

Attack
Targeted

Pre-trained DaST-P DaST-L

FGSM [14] 9.62 (1.54) 6.69 (1.54) 7.32 (1.54)

BIM [22] 17.43 (1.00) 20.22 (1.18) 15.26 (1.16)

PGD [27] 10.46 (1.05) 14.09 (1.12) 8.32 (1.10)

C&W [6] 23.15 (2.05) 26.53 (1.98) 19.78 (2.04)

10 dataset, and evaluate the performance in terms of attack

success rate in label-only and probability-only scenarios.

We conduct experiments to evaluate the performance in

probability-only and label-only attack scenarios and use the

VGG-16 network as the attacked model. We train a pre-

trained ResNet-50 network on the same train set of the at-

tacked model. The performances of our DaST are shown

in Table 3. The substitute model trained by DaST-P and

DaST-L achieve 25.15% and 20.35% of accuracy on the

test set, respectively. Our DaST also achieves competitive

performance with the pre-trained model. In most cases of

the probability-only scenario (FGSM, BIM, C&W for non-

targeted attack, BIM, PGD, C&W for targeted attacks), the

substitute models generated by DaST-P outperform baseline

models. The substitute models trained by DaST-L perform

better than baseline models on C&W attacks (non-targeted).

We also evaluate the performances of our DaST with dif-

ferent substitute architectures in the probability-only sce-

nario. The VGG-16 network is used as the attacked model.

We apply our DaST using 3 different substitute architec-

tures, which include the VGG-13, ResNet-18, and ResNet-

50. The attack success rates of these three substitute ar-

chitectures are shown in Table 4. It demonstrates that both

architectures for the substitute model obtain good results on

adversarial attacks. In most cases (BIM, PGD, C&W for

non-targeted attack, FGSM, BIM, PGD, C&W for targeted

attacks), the VGG-13 outperforms other models in terms

of the adversarial attack. The ResNet-50 obtains the best

results on FGSM attacks (targeted). Different from experi-

ments on MNIST, the simple model achieves the best results

on CIFAR-10. We visualize the adversarial examples gener-

ated by DaST-P and DaST-L in Figure 2 and 3, respectively.

The attack perturbations for these two scenarios are small.
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Table 4. Performances of the proposed DaST with three different

substitute architectures on CIFAR-10. “VGG-13”, “ResNet-18”

“ResNet-50”: the attack success rates (the high is better) of ad-

versarial examples generated by DaST with VGG-13, ResNet-18

and ResNet-50 substitute models, respectively. The numbers in ( )

denote the average LF perturbation distance per image.

Attack
Non-targeted (%)

VGG-13 ResNet-18 ResNet-50

FGSM [14] 6.87 (1.54) 17.97 (1.54) 39.63 (1.54)

BIM [22] 93.13 (1.18) 31.70 (1.54) 59.71 (1.18)

PGD [27] 56.14 (1.08) 10.04 (1.11) 29.10 (1.10)

C&W [6] 56.80 (1.64) 11.54 (1.64) 13.52 (0.74)

Attack
Targeted (%)

VGG-13 ResNet-18 ResNet-50

FGSM [14] 18.27 (1.54) 2.07 (1.54) 6.69 (1.54)

BIM [22] 62.23 (1.24) 8.00 (1.52) 20.22 (1.18)

PGD [27] 41.48 (1.17) 3.72 (1.26) 14.09 (1.12)

C&W [6] 33.65 (2.42) 7.31 (1.46) 26.53 (1.98)

FGSM

BIM

CW

PGD

Figure 2. Visualization of the adversarial examples generated by

DaST-L on CIFAR-10. We generate 5 samples for each attack.

4.4. Experiments on Microsoft Azure

In this subsection, we conduct experiments for attacking

the online model on Microsoft Azure in two scenarios.

We use the example MNIST model of the machine learn-

ing tutorial on Azure as the attacked model and employ it

as a web service. We do not know the machine learning

method and architecture of this model. The only informa-

tion we can obtain is the outputs of this model. We apply

the probability-based DaST and label-based DaST attacks

to this model to evaluate the performance of the proposed

method in real-world applications. The substitute model

in this experiment has 5 convolutional layers. The substi-

tute model trained by DaST-P and DaST-L achieve 79.35%

Table 5. Performance of the proposed DaST for attacking Mi-

crosoft Azure example model. “Pre-trained”, “DaST-P” “DaST-

L”: the attack success rate (the high is better) of adversarial

examples generated by the pre-trained large network, DaST in

probability-only scenario and DaST in label-only scenario, respec-

tively. The numbers in ( ) denote the average LF perturbation

distance per image. Because it is hard to generate adversarial ex-

amples for all methods on C&W [6], we omit this attack method.

Attack
Non-targeted (%)

Pre-trained DaST-P DaST-L

FGSM [14] 77.96 (5.41) 96.83 (5.25) 98.21 (5.36)

BIM [22] 66.25 (4.81) 96.42 (4.79) 98.35 (4.72)

PGD [27] 59.23 (3.99) 90.63 (3.88) 96.97 (3.96)

Attack
Targeted (%)

Pre-trained DaST-P DaST-L

FGSM [14] 13.52 (5.46) 32.00 (5.21) 43.99 (5.37)

BIM [22] 19.31 (4.88) 50.21 (4.90) 71.15 (4.56)

PGD [27] 19.31 (4.60) 45.66 (4.46) 65.91 (4.32)

FGSM

BIM

CW

PGD

Figure 3. Visualization of the adversarial examples generated by

DaST-P on CIFAR-10. We generate 5 samples for each attack.

and 90.75% of accuracy on the MNIST test set, respec-

tively. The performance on adversarial attacks of the pro-

posed method is shown in Table 5.

The performance of DaST-L is better than its of DaST-P

on this online model. Because the attacked Azure model

is too simple, the accuracy on MNIST is only 91.93%.

Figure 6 shows the training of DaST-P, which can access

more information of attacked model than DaST-L, suffers

over-fitting. DaST-L substitutes achieve a very high at-

tack success rate on FGSM (98.21%), BIM (98.35%), PGD

(96.97%) attacks. Moreover, our DaST method achieves a

high attack success rate even on targeted attacks. Compared

with the models trained by the MNIST train set, substitute

models trained by DaST perform much better on label-only
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Table 6. Comparison of DaST and other attacks. ”ASR”: attack

success rate. ”Query”: the number of queries in the evaluation

stage. ”Boundary”: Decision-Based Attacks [3]. ”GLS”: a score-

based black-box attack based on greedy local search [31]. ”-” de-

notes our DaST does not need query in the evaluation stage. The

DaST in this experiment generate attacks with BIM.

Attack ASR Distance Query

DaST-P 96.83% 4.79 -

GLS [31] 40.51% 4.27 297.07

DaST-L 98.35% 4.72 -

Boundary [3] 100% 4.69 670.54

(20.25%, 32.10%, 37.74% higher on non-targeted FGSM,

BIM, PGD attacks, respectively. 30.47%, 51.84%, 46.60%

higher on targeted FGSM, BIM, PGD attacks, respectively)

and probability-only scenarios. It presents that our ap-

proach is better at attacking actual online models, even the

proposed method does not need any real data. Because

DaST does not need any query in the evaluation stage but

needs queries in the training stage, our DaST requires differ-

ent information than score-based attacks and decision-based

attacks (they need queries in the evaluation stage). We

show the number of queries for score-based and decision-

based attacks, which have similar perturbation distance with

DaST in non-targeted attacks. The results are shown in

Table 6. Our DaST is trained by 20,000,000 queries for

the attacked model in the training stage. Compared with

decision-based and score-based attacks, the input each time

the DaST accesses the attacked model is different in the

training stage (current query-based attacks need to use one

original data to access the attacked model numerous times

to generate each attack). So the queries of DaST are harder

to be tracked than other attacks.

Visualization: we visualize the synthetic samples gener-

ated by the generative model in DaST on Azure experi-

ments, which is shown in Figure 4. We also visualize the

adversarial examples generated by DaST-P and DaST-L in

Figure 5. The attack perturbations of DaST are small.

Training convergence: We show the curve of attack suc-

cess rate of BIM attacks generated by DaST in the training

stage of Azure experiments, which is shown in Figure 6.

The attack success rates for DaST-L and DaST-P converge

after 20,000,000 and 2,000,000 queries, respectively.

5. Conclusion

We have presented a data-free method DaST to train

substitute models for adversarial attacks. DaST reduces

the prerequisites of adversarial substitute attacks by utiliz-

ing GANs to generate synthetic samples. This is the first

method that can train substitute models without the require-

ment of any real data. The experiments showed the effec-

Figure 4. Visualization of the synthetic samples generated by the

generator in the training of DaST. Left: samples generated by the

DaST-L. Right: samples generated by the DaST-P.

FGSM

BIM

PGD

Figure 5. Visualization of the adversarial examples generated by

DaST for attacking the Azure model. Left: examples generated by

DaST-P. Right: examples generated by DaST-L.

Figure 6. Attack success rate of BIM attacks generated by DaST

in training stage of Azure experiments.

tiveness of our method. It presented that machine learning

systems have significant risks, attackers can train substitute

models even when the real input data is hard to collect.

The proposed DaST cannot generate adversarial exam-

ples alone, it should be used with other gradient-based at-

tack methods. In future work, we will design a new sub-

stitute training method, which can generate attacks directly.

Furthermore, we will explore the defense for DaST.
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