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Abstract

Person Re-IDentification (P-RID), as an instance-level

recognition problem, still remains challenging in computer

vision community. Many P-RID works aim to learn faith-

ful and discriminative features/metrics from offline train-

ing data and directly use them for the unseen online testing

data. However, their performance is largely limited due to

the severe data shifting issue between training and testing

data. Therefore, we propose an online joint multi-metric

adaptation model to adapt the offline learned P-RID mod-

els for the online data by learning a series of metrics for all

the sharing-subsets. Each sharing-subset is obtained from

the proposed novel frequent sharing-subset mining module

and contains a group of testing samples which share strong

visual similarity relationships to each other. Unlike existing

online P-RID methods, our model simultaneously takes both

the sample-specific discriminant and the set-based visual

similarity among testing samples into consideration so that

the adapted multiple metrics can refine the discriminant of

all the given testing samples jointly via a multi-kernel late

fusion framework. Our proposed model is generally suit-

able to any offline learned P-RID baselines for online boost-

ing, the performance improvement by our model is not only

verified by extensive experiments on several widely-used

P-RID benchmarks (CUHK03, Market1501, DukeMTMC-

reID and MSMT17) and state-of-the-art P-RID baselines

but also guaranteed by the provided in-depth theoretical

analyses.

1. Introduction

Person Re-Identification (P-RID), aiming to retrieve the

same identity images of a query probe from a gallery set,

is not only an attractive research task in computer vision

community, but also a critical link to the practical applica-

tions such as public camera surveillance. A popular solu-

tion to P-RID is to perform supervised feature/metric learn-
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Figure 1. The normalized pair-wise distance distributions of

both training and testing samples based on the well-trained

HA-CNN model on Market1501 dataset demonstrate the severe

training-testing data distribution shifting issue, where the ex-

tremely challenging hard negative distractors (in blue box) will

significantly influence the retrieval accuracy (the Original top-10

retrieval results). Even using the state-of-the-art online re-ranking

method [45] (RR), the ground-truth (in red box) still has a lower

rank than the distractors. Our method succeeds in handling the

distractors so that the true-match is successfully re-ranked to the

top position in the list (Ours).

ing [2, 29, 18, 30, 6, 40, 12] from the offline training data,

then directly apply them to the online unsupervised testing

data for evaluation. However, due to the severe training-

testing data distribution shifting (testing data are drawn

from totally different classes against the training data as

shown in Fig. 1) caused by large variations in visual appear-

ance, human pose, camera viewpoint, illumination change,

and background clutter, the performance of offline learned

models is limited indeed.

The root of such a limited performance is its treatment

regardless of the information of online testing data them-

selves. So a straightforward solution is adapting the of-

fline learned models for the online testing data to nar-

row the distribution gap. Recently, various online P-

RID methods are proposed which can be roughly catego-

rized into two branches. The set-centric re-ranking ap-

proaches [35, 9, 43, 3, 1] focus on optimizing the ranking

list of queries based on the similarity relationships among
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testing samples. Their performances totally rely on the of-

fline learned models from training data while treat differ-

ent testing samples equally ignoring the individual charac-

teristics, hence the improvement is neither significant nor

stable. The other category is query-specific metric adapta-

tion [17, 38, 45] which aims to enhance the discriminant of

each query individually. The generic offline learned met-

ric is adapted to an instance-specific local metric for each

query. Compared with the set-centric ones, the individual

discriminant of queries is enhanced while the visual similar-

ity relationships among given testing samples are ignored.

Moreover, existing query-specific models [17, 38, 45] com-

pletely ignore the counterpart gallery data during adapta-

tion. Even a discriminative probe-specific metric can be

learned, the “hard” gallery samples with large intra-class

and small inter-class variances will tremendously degrade

its performance since they are still indistinguishable under

the learned query-specific metric ( Fig. 1).

In order to tackle the aforementioned issues, we pro-

pose a novel online joint multi-metric adaptation algorithm

which not only takes individual characteristics of testing

samples into consideration but also fully explore the vi-

sual similarity relationships among both query and gallery

samples. As shown by Fig. 2, at the online P-RID test-

ing stage, the redundant intrinsic visual similarity relation-

ships among unlabeled query (gallery) set are utilized by

our proposed frequent sharing-subsets mining model to au-

tomatically mine the concise and strong visual sharing as-

sociations of samples. Since a sharing-subset contains a

group of queries (galleries) sharing strong visual similar-

ity to each other, their local distributions will be jointly ad-

justed by efficiently learning a Mahalanobis metric for all

of them. Once a series of such kind of sharing-subset based

Mahalanobis metrics are learned, for each query (gallery),

its instance-specific local metric is obtained via a multi-

metric late fusion of all the sharing-subset based Maha-

lanobis metrics. Therefore, our proposed online joint Multi-

Metric adaptation model based on the frequent sharing-

subsets Mining (denoted as M3) is able to refine the ranking

performance online. The success of learning from sharing

relies on discovering the latent sharing relationships among

samples, which cannot be found by treating each instance

independently [4]. Learning from sharing is good at han-

dling such condition that only a limited number of learn-

ing data are available by taking the sharing relationships as

data augmentation. Therefore the sharing strategy is par-

ticularly suitable for online P-RID learning in where each

testing sample itself is the only positive sample available

for learning.

The main contributions of this paper are as follows: (1)

To handle the severe shifted training-testing data distribu-

tion issue in P-RID, we leap from offline global learning

to online instance-specific metric adaptation. We propose

a general and flexible learning objective to simultaneously

enhance the local discriminant of testing query and gallery

data. (2) By mining various frequent sharing-subsets, the

intrinsic visual similarity sharing relationships are fully ex-

plored. Therefore the online time cost of learning metrics

from sharing is much more smaller than learning local met-

rics independently. (3) To fulfill the time-efficient require-

ment of online testing, a theoretical sound optimization so-

lution is proposed for efficient learning which is also proven

to guarantee the improvement of performance. (4) Our

proposed model can be readily applied to any existing of-

fline P-RID baselines for online performance improvement.

The efficiency and effectiveness of our method are further

verified by the extensive experiments on four challenging

P-RID benchmarks (CUHK03, Market1501, DukeMTMC-

reID and MSMT17) based on various state-of-the-art P-RID

models.

2. Related Work

Online Re-Ranking in P-RID: In recent years, increas-

ing efforts have been paid to online P-RID re-ranking. Ye

et al. [35] revised the ranking list by considering the near-

est neighbors of both the global and local features. An un-

supervised re-ranking model proposed by Garcia et al. [9]

takes advantage of the content and context information in

the ranking list. Zhong et al. [43] proposed a k-reciprocal

encoding approach for re-ranking, which relies on a hy-

pothesis that if a gallery image is similar to the probe in

the k-reciprocal nearest neighbors, it is more likely to be a

true-match. Zhou et al. [45] proposed to learn an instance-

specific Mahalanobis metric for each query sample by us-

ing extra negative learning samples at online stage. Barman

et al. [3] focused on how to make a consensus-based de-

cision for retrieval by aggregating the ranking results from

multiple algorithms, only the matching scores are needed.

Bai et al. [1] concentrated on re-ranking with the capac-

ity of metric fusion for P-RID by proposing an Unified En-

semble Diffusion (UED) framework. However, the afore-

mentioned online re-ranking methods either simply treat

different testing samples equally without considering the

instance-specific characteristics or completely ignore the in-

trinsic visual similarity relationships among testing sam-

ples, so that the performance improvement is neither stable

nor significant.

CNN-based Feature Extraction in P-RID: CNN-based

feature extraction has achieved the state-of-the-art perfor-

mance in P-RID. A novel Harmonious Attention CNN (HA-

CNN) proposed by Li et al. [18] tries to jointly learn atten-

tion selection and feature representation in a CNN by max-

imizing the complementary information of different levels

of visual attention (soft attention and hard attention). Wang

et al. [30] proposed a novel deeply supervised fully atten-

tional block that can be plugged into any CNNs to solve
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Figure 2. The online testing query and gallery samples are fed into the offline learned baseline model to obtain the feature descriptors

firstly. The proposed frequent sharing-subset (SSSet) mining model is performed to the extracted features to generate multiple sharing-

subsets which are further utilized by the proposed joint multi-metric adaptation model (The same sample may be contained by multiple

SSSets since it shares different visual similarity relationships with different samples.). By fusing the learned matching metrics for each

query and gallery sample, our final ranking list is obtained by a bi-directional retrieval matching (Sec. 3.5).

P-RID problem, and a novel deep network called Mancs is

designed to learn stable features for P-RID. Hou et al. [12]

proposed the Spatial Interaction-and-Aggregation (SIA)

and Channel Interaction-and-Aggregation (CIA) modules to

improve the representational capacity of deep convolutional

networks. Chen et al. [6] proposed an Attentive but Di-

verse Network (ABD-Net) which integrates attention mod-

ules and diversity regularizations throughout the entire net-

work to learn features that are representative, robust, and

more discriminative for P-RID. Zheng et al. [40] aimed

at improving the learned P-RID features by better leverag-

ing the generated data by designing a joint learning frame-

work that couples P-RID learning and data generation end-

to-end. However, these well-trained networks are directly

applied to the testing data for feature extraction and eval-

uation, the data distribution shifting between training and

testing samples definitely limits the performance of these

models. Therefore, our proposed method is suitable for any

CNNs for sample-specific local metric adaptation at infer-

ence stage aiming to address the data shifting issue well and

gain a further performance improvement.

3. M3: Online Joint Multi-Metric Adaptation

from Frequent Sharing-Subset Mining

3.1. Problem Settings and Notations

At the online testing stage of P-RID, two disjoint

datasets, a query set Q and a gallery set G are given as:

Q = {(qi, l
q
i )}

nq

i=1 G = {(gi, l
g
i )}

ng

i=1

that qi, gi ∈ R
d are the extracted feature representations

from an offline baseline model, either handcraft features or

learned deep features. lqi , l
g
i ∈ {1, 2, ..., c} are the labels

from c classes which are totally different from the training

ID #Node

6

4

3

...

Header Table
root

ti

Figure 3. A CFI-Tree is constructed based on T . The same iden-

tity may be contained by multiple ti so that there may be multiple

nodes for the same identity.

sample classes. P-RID aims to rank G for a query probe

q based on the pair-wise similarity distance to a gallery g,

d(q, g) = ‖q, g‖2. Our goal is to re-rank G for q by refining

d(q, g) to improve the rank of true-matches for q.

3.2. Unsupervised Frequent Sharing­Subset Mining

Although the identity label {lqi } ({lgi }) is unknown dur-

ing testing, the visual similarity relationships of Q (G) are

intrinsic and verified to be effective in investigating the un-

derlying similarity structure of samples by previous online

re-ranking methods [9, 43]. However, due to the large-scale

sample size (especially for G), the redundancy and repeata-

bility of visual similarity relationships significantly limit

the performance of previous online P-RID methods. In-

spired by the well-established frequent itemset mining tech-

nique [8], we propose an unsupervised frequent sharing-

subset (SSSet) mining algorithm to automatically mine fre-

quent SSSets {Si}
ns

i=1 from Q, that all the samples in Si

share a Strong Association Rule on visual similarity [8].
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Therefore, the mined SSSets not only keep the strong and

reliable visual similarity sharing information but also signif-

icantly alleviate the redundancy. Compared with the origi-

nal combinatorial problem suffering from exponential com-

putation complexity O(2n), the time complexity of our pro-

posed algorithm is O(n2) which is much more efficient

when a large scale of testing samples are given.

Considering Q as the given Item set, we firstly prepare

a Transaction set T = {ti}
nt

i=1 from Q where each ti is

a subset of Q. The affinity matrix A ∈ R
nq×nq of Q is

defined as:

Ai,j =

{

exp
(

−d(qi,qj)
2σ

)

/
∑

j exp
(

−d(qi,qj)
2σ

)

, j 6= i

0, j = i
(1)

where σ is the variance parameter of distance matrix from

Q so that Ai,j represents the soft-max normalized visual

similarity between qi and qj . The i-th row of A represents

the similarity distribution between qi and the other samples

in Q. To keep only the most reliable sharing relationships, a

threshold Θ defined as the average affinity of Q is used for

outlier filtering: Θ =
∑nq

i=1

∑nq

j=1 Ai,j/nq · nq . Therefore,

a binary index map B is obtained by:

Bi,j =

{

1, Ai,j ≥ Θ
0, Ai,j < Θ

(2)

The non-zero Bi,j implies the strong similarity sharing re-

lationship between qi and qj . Therefor each non-zero row

Bj of B can be considered as a Transaction ti.

T = {ti} = {Bj}, ∀
∑

Bj ≥ 1 (3)

Once the transaction set T is obtained, we propose to

mine the frequent sharing-subsets from T that each sharing-

subset is represented by a mined frequent pattern from

a classical FP-Close mining algorithm [10]. To do so,

a Closed Frequent Itemset Tree (CFI-Tree) is firstly con-

structed based on T under a minimum support 5 (Fig. 3),

then the FP-Close mining algorithm in [10] is performed to

the constructed CFI-Tree to obtain all the closed frequent

patterns {Si}
ns

i=1 that each Si represents a sharing-subset.

3.3. Joint Multi­Metric Adaptation From SSSets

Once all the frequent SSSets {Si}
ns

i=1 are obtained, our

goal is to jointly learn ns SSSets-based local Mahalanobis

metrics for {Si}
ns

i=1 by optimizing Eqn. 4:

arg min
{Mi}

1

2

ns
∑

i=1

‖Mi‖
2

w.r.t : Mi � 0
(

siu − sjv
)T

(Mi +Mj)
(

siu − sjv
)

≥ 2, ∀siu ∈ Si, s
j
v ∈ Sj

(

siu − siv
)T

Mi

(

siu − siv
)

= 0, ∀siu ∈ Si, s
i
v ∈ Si

(4)

The learned metric Mi from Eqn. 4 is shared by all the

samples in Si. Suppose we have ns SSSets and O(n) sam-

ples in each Si, there are totally O(n2
sn

2) inequality con-

straints and O(nsn
2) equality constraints in Eqn. 4 which

are too difficult to deal with, so that we aim to reduce the

constraint size in Eqn. 4. We find out that Eqn. 4 has an

exactly equivalent form by only keeping the constraints re-

lated to one anchor sample si in Si, that si can be any sam-

ple in Si. Therefore the equivalent form is shown by Eqn. 5:

arg min
{Mi}

1

2

ns
∑

i=1

‖Mi‖
2

w.r.t : Mi � 0
(

si − sjv
)T

(Mi +Mj)
(

si − sjv
)

≥ 2, ∀si ∈ Si, s
j
v ∈ Sj

(

si − siv
)T

Mi

(

si − siv
)

= 0, ∀si ∈ Si, s
i
v ∈ Si

(5)

Revisit Eqn. 4, its equality constraints propose to col-

lapse all siu ∈ Si together. Therefore keeping only the

equality constraints related to the anchor sample si achieves

the same collapsing performance. So as to the inequal-

ity constraints in Eqn. 4. Finally, we can reduce the con-

straint size by only keeping the constraints related to si

as in Eqn. 5. The re-formed objective Eqn. 5 has only

O(n2
sn) and O(nsn) inequality and equality constraints re-

spectively. An important merit of Eqn. 5 is that it can be

efficiently optimized:

Theorem 1 All the vectors si − siv in Eqn. 5 form a span-

ning space H = span(
∑

v λv(s
i − siv)). Eqn. 5 is equiva-

lent to replace si − sjv by h⊥
v , the projection of si − sjv in

H⊥, that H⊥ is the orthogonal space of H.

Proof 1 Since Mi is positive semi-definite, we have
(

si − siv
)T

Mi

(

si − siv
)

= 0 ⇔ Mi

(

si − siv
)

= 0 ⇔

Mih = 0, ∀h ∈ H. Projecting si − sjv to H and H⊥

generates two orthogonal bases hv and h⊥
v respectively, so

si − sjv = hv + h⊥
v . Replace the inequality constraints in

Eqn. 5 by hv + h⊥
v :

(

si − sjv
)T

(Mi +Mj)
(

si − sjv
)

=
(

hv + h⊥
v

)T
(Mi +Mj)

(

hv + h⊥
v

)

= h⊥
v

T
(Mi +Mj)h

⊥
v

(6)

Now Eqn. 5 has an equivalent form as:

arg min
{Mi}

1

2

ns
∑

i=1

‖Mi‖
2

w.r.t : Mi � 0

h⊥
v

T
(Mi +Mj)h

⊥
v ≥ 2, ∀si ∈ Si, s

j
v ∈ Sj

Mih = 0, ∀h ∈ H

(7)

2912



Finally, we prove that Eqn. 7 has the same solution to

Eqn. 4 by eliminating its PSD and equality constraints.

Theorem 2 The solution to Eqn. 4 is exactly the same as

solving the Eqn. 7 by relaxing its equality and PSD con-

straints, since they are indeed off-the-shelf.

Proof 2 If we get rid of the PSD and equality constraints in

Eqn. 7, the new form is:

arg min
{Mi}

1

2

ns
∑

i=1

‖Mi‖
2

w.r.t : h⊥
v

T
(Mi +Mj)h

⊥
v ≥ 2, ∀si ∈ Si, s

j
v ∈ Sj

(8)

Eqn. 8 is exactly in the same form of a multi-kernel SVM

problem so that it can be efficiently solved.

Thus the positive semi-definiteness of Mi is guaranteed

since Mi =
∑

αvϕ(h
⊥
v ) =

∑

αvh
⊥
v · h⊥

v
T

� 0. For the

equality constraints in Eqn. 7, given a member s of S, we

have:

Mih =
(

∑

αvh
⊥
v · h⊥

v

T
)

h =
∑

αvh
⊥
v · (h⊥

v

T
h) = 0

(9)

which proves that the solution to Eqn. 8 satisfies the equality

constraints as well.

3.4. Bi­Directional Discriminant Enhancement

At online testing stage, the gallery set G, the counterpart

of query set Q, also plays an important role. As shown

by Fig. 1, the re-ranking performance by using only the

query-centric metric adaptation may suffer from ambiguous

gallery distractors. The similar gallery images from differ-

ent identities will significantly degrade the discriminant of

Mp since these gallery distractors are still indistinguishable

under Mp. Therefore, we aim to handle these indistinguish-

able gallery samples by performing a gallery-centric local

discriminant enhancement method as Eqn. 4. The SSSets

of G and the corresponding joint metrics are obtained via

Sec. 3.2 and Eqn. 4 respectively.

3.5. Multi­Metric Late Fusion For Re­Ranking

For one query probe q, it may be contained by multiple

SSSets so that there will be multiple learned metrics Mi

associated to q. The final metric Mq for q is obtained via a

boosting-form multi-metric late fusion [24, 23]:

Mq =

(

ns
∑

i=1

γiMi

)

/
∑

γi (10)

where γi = 1 if q ∈ Si. For a gallery sample g, a similar

fused metric Mg can be obtained likewise. Therefor the

refined distance between q and g is defined as Eqn. 11 based

on which the re-ranking list of qi is obtained.

d (q, g) = (q − g)
T
(Mq + λMg) (q − g) (11)

4. Theoretical Analyses and Justifications

As demonstrated by Theorem. 2, the solution of our

joint multi-metric adaptation objective can be readily trans-

formed to the equivalent form as [45]. Therefore, the ap-

pealing theoretical properties in [45] can be inherited by our

learned Mi as presented in Theorem. 3. Moreover, our late

multi-kernel fusion metric Eqn. 10 will guarantee a further

reduction of generalization error bound as in Theorem. 4.

Theorem 3 (The reduction of both asymptotic and prac-

tical error bound by the learned Mi): As demonstrated by

the Theorem.2 in [45], for an input x, its asymptotic error

P
a(e|x) by using extra negative data Da is:

P
a(e|x) =

(2− q)P(e|x)

2− 2qP(e|x)
≤ P(e|x) (12)

where q is a probability scalar that 0 ≤ q ≤ 1 and

P(e|x) is the Bayesian error. Moreover, the asymptotic er-

ror Pa(e|x) can be best approximated by the practical error

rate Pn(e|x) (n is finite) by finding a local metric Mx which

turns out to be the one for our Eqn. 4.

Theorem 4 (The reduction of generalization error bound

by using Mq/g in Eqn. 10): Our fused multi-kernel metric

Mq = (
∑ns

i=1 γiMi) /
∑

γi is a linear combinations of sev-

eral base kernels Mi from the family of finite Gaussian ker-

nels: Kd
G := {KM : (x1, x2) 7→ e−(x1−x2)

T M(x1−x2) | M ∈
R

d×d, M � 0} which is bounded by Bk. Therefore, for a

fixed δ ∈ (0, 1), ns < nk is the number of metrics (kernels)

involved in our final joint multi-metric learning solution.

With probability at least 1− δ over the choice of a random

training set X = {xi}
n
i=1 of size n we have:

Eest(Mi) ≃ O

(

√

nk +Bk

n

)

(13)

Eest(Mq) ≃ O

(

√

log nk +Bk + 2ns

n

)

(14)

In our work, we have ns ≪ nk, that the selected num-

ber of kernels is much fewer than the total kernel number,

so that Eest(Mq) ≃ O

(

√

log nk +Bk

n

)

≪ Eest(Mi) ≃

O

(

√

nk +Bk

n

)

. The generalization error by using Mq is

much smaller than using only any Mi. The same conclusion

can be obtained for Mg likewise.

Proof 3 The classification rule of our learned Mi can be

defined as ζj
(

q̃T Mix̃j − 1
)

≥ 1 so that the margin is 1.

Motivated by [25], the generalization error Eest(Mi) of us-

ing kernel Mi is bounded by O

(

√

nk +Bk

n

)

. While by
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Figure 4. The visualization of rank improvement on CUHK03 (1th, 2nd) and Market1501 (3rd, 4th) based on HA-CNN. For each case, its

top-10 (left to right) matches are presented and the true-match is labeled by the red box. The 1st row is the baseline result, the 2nd row is

the result only using Mq and the 3rd row is the result using both Mq and Mg .

using Mq , which is a linear combination of all Mi from the

family of finite Gaussian kernel Kd
G, its generalization er-

ror Eest(Mq) is bounded by O

(

√

log nk +Bk + 2ns

n

)

which is guaranteed by the Theorem.2 in [14]. For the ker-

nel family Kd
G, nk ≃ O(d2) and in our work, d ≈ 103

so that nk ≈ 106. The selected kernels for combination

is about 20 in average so that ns ≪ nk which means

Eest(Mq) ≪ Eest(Mi).

5. Experiments

5.1. Experimental Settings

Datasets. We evaluate our proposed M3 model on

CUHK03 [17], Market1501 [39], DukeMTMC-reID [41]

and MSMT17 [33] benchmarks. The statistic details of the

above datasets are summarized in Table. 1. For CUHK03 1,

the new splitting protocol proposed by [43] is adopted in

our experiment so that 767 identities are used for training

as well as the left 700 identities are used for testing. As

for the other three benchmarks, Market1501, DukeMTMC-

reID and MSMT17, the pre-determined probe and gallery

sets are directly utilized with no modification.

Dataset cuhk03 market duke msmt17

#T-IDs 767 751 702 1040

#Q-IDs 700 750 702 3060

#G-IDs 700 751 1110 3060

#cam 2 6 8 15

#images 28192 32668 36411 126441

Table 1. The statistics of P-RID benchmarks. #T/Q/G-IDs denote

the number of training/query/gallery ids.

Baselines. Our proposed M3 method is evaluated

based on several state-of-the-art CNN-based P-RID mod-

els: ResNet50 [11], DenseNet121 [13], HA-CNN [18],

MLFN [5] and ABDNet[6]. The general CNN mod-

els, ResNet50 and DenseNet121, are well trained on each

benchmark for feature extraction. HA-CNN, MLFN and

ABDNet are the P-RID specific CNNs so that the original

works are directly utilized in our experiments. Besides, the

1In our experiment, the CUHK03 detected dataset is utilized.

other state-of-the-art P-RID methods [15, 21, 37, 27, 28, 5,

26, 40, 46, 6] are further compared. Moreover, related on-

line P-RID methods including [45] (OL) and [43] (RR) are

compared with our M3 method.

Evaluation. We follow the same official evaluation pro-

tocols in [39, 41, 17, 33], the single-shot evaluation setting

is adopted and all the results are shown in the form of Cu-

mulated Matching Characteristic (CMC) at several selected

ranks and mean Average Precision (mAP). Various ablation

studies of our proposed model are explored in Sec. 5.5.
5.2. Comparison with the State­of­the­arts

Evaluation on CUHK03: The comparison results on

CUHK03 (767/700 splitting protocol) are presented in Ta-

ble. 2. Our M3 model significantly boosts the baseline

Rank@1(mAP) performance of ResNet50, DenseNet12,

HA-CNN and MLFN to 66.9%(60.7%), 61.6%(54.4%),

69.8%(63.5%) and 73.4%(71.2%) with a 40.0%(29.7%),

50.2%(35.7%), 45.4%(33.4%) and 34.2%(44.7%) relative

improvement respectively. Even compared with the state-

of-the-art method MGN [31], our results outperform it by

5% at Rank@1. The reason for such a large improvement

is that the “hard” gallery distractors which are still indis-

tinguishable under Mq is well handled by our M3 method

(Fig. 4), so the ranking of true-match gallery targets is sig-

nificantly improved.

Evaluation on Market1501: The superiority of our

M3 method is further verified by the experiments on Mar-

ket1501. Table. 2 demonstrates that although the state-of-

the-art approach ABDNet [6] has achieved a pretty high

performance (≥ 94%) on Market1501, the improvement of

our M3 is still over 3.7%(10%) on Rank@1(mAP) based on

ABDNet (visualization results in Fig. 4).

Evaluation on DukeMTMC-reID: DukeMTMC-reID

is a recent benchmark proposed for P-RID, but the latest

methods have obtained promising performances. As shown

in Table. 2, the recently published OSNet [46] has raised

the state-of-the-art to 87.0%(70.2%). Our ABDNet+M3 im-

proves the Rank@1(mAP) result to 87.5%(73.3%), which

beats OSNet by a large margin on mAP.

Evaluation on MSMT17: MSMT17 is the latest and

largest benchmark so far which is pretty challenging due to

the extreme large-scale identities and distractors. We eval-
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CUHK03(767/700) Market1501 DukeMTMC-reID

Method R@1 mAP Method R@1 mAP Method R@1 mAP

ResNet50[11] 47.9 46.8 ResNet50[11] 88.5 71.3 ResNet50[11] 77.7 58.8

DenseNet121[13] 41.0 40.1 DenseNet121[13] 88.2 69.2 DenseNet121[13] 78.6 58.5

HA-CNN[18] 48.0 47.6 HA-CNN[18] 90.6 75.3 HA-CNN[18] 80.7 64.4

MLFN[5] 54.7 49.2 MLFN[5] 90.1 74.3 MLFN[5] 81.0 62.8

ABDNet[6] N/A N/A ABDNet[6] 93.7 85.5 ABDNet[6] 84.1 67.7

OSNet[46] N/A N/A OSNet[46] 94.2 82.6 OSNet[46] 87.0 70.2

PCB[28] 63.7 67.5 PCB[28] 83.3 69.2 PCB[28] 83.3 69.2

SVDNet[27] 41.5 37.3 SVDNet[27] 82.3 62.1 SVDNet[27] 76.7 56.8

DPFL[7] 40.7 37.0 DNSL[36] 61.0 35.6 DuATM[22] 81.8 64.6

PAN[42] 36.3 34.0 Part-aligned[26] 91.7 79.6 Part-aligned[26] 84.4 69.3

ResNeXt[34] 43.8 38.7 PN-GAN[19] 77.1 63.6 PAN[42] 71.6 51.5

DaRe[32] 55.1 51.3 DeepCC[20] 89.5 75.7 GAN[41] 67.7 47.1

MGN[31] 68.0 67.4 Mancs[30] 93.1 82.3 SPreID[16] 85.9 73.3

M3+ResNet50 66.9 60.7 M3+ResNet50 95.4 82.6 M3+ResNet50 84.7 68.5

M3+DenseNet121 61.6 54.4 M3+DenseNet121 95.3 81.2 M3+DenseNet121 84.9 68.0

M3+HA-CNN 69.8 63.5 M3+HA-CNN 96.5 85.2 M3+HA-CNN 87.1 72.2

M3+MLFN 73.4 71.2 M3+MLFN 96.4 85.0 M3+MLFN 86.5 71.5

M3+ABDNet N/A N/A M3+ABDNet 97.9 92.6 M3+ABDNet 87.5 73.3

Table 2. Compared with the state-of-the-arts on CUHK03, Market1501, and DukeMTMC-reID.
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Figure 5. The influence of λ on (left) CUHK03, (mid) Market1501 and (right) DukeMTMC-reID based on HA-CNN.

MSMT17 Baseline Baseline+M3

Method R@1 mAP R@1 mAP

ResNet50[11] 63.4 34.2 72.8 55.0

DenseNet121[13] 66.0 34.6 75.5 43.1

HA-CNN[18] 64.7 37.2 74.3 43.8

MLFN[5] 66.4 37.2 72.8 43.4

ABDNet[6] 82.3 60.8 85.7 64.2

Table 3. Compared with the state-of-the-arts on MSMT17.

uate the performance of selected baselines on the MSMT17

dataset with(w/) and without(w/o) our M3 model in Ta-

ble. 3. For all the baselines, our M3 model significantly im-

proves their Rank@1(mAP) performance. The performance

of ABDNet is boosted from 82.3%(60.8%) to a state-of-the-

art level of 85.7%(64.2%). Table. 3 verifies the scalability

of our proposed M3 model, even for the extremely large-

scale query/gallery sets, our method is still able to consis-

tently improve the baseline performance.

Method CUHK03 Market Duke

HA-CNN[18] 48.0(47.6) 90.6(75.3) 80.7(64.4)

HA-CNN+RR [43] 54.8(55.7) 91.4(79.0) 82.5(69.9)

HA-CNN+OL [45] 62.3(56.5) 92.7(78.9) 83.7(67.8)

HA-CNN+M3 69.8(63.5) 96.5(85.2) 87.1(72.2)

Dense121[13] 41.0(40.1) 88.2(69.2) 78.6(58.5)

Dense121+RR [43] 48.1(51.5) 90.2(85.0) 83.7(76.9)

Dense121+OL [45] 53.1(49.3) 90.4(74.0) 80.2(64.1)

Dense121+M3 61.6(54.4) 95.3(81.2) 84.9(68.0)

Table 4. Compared with online P-RID refinement methods.

5.3. Comparison with Online P­RID Re­ranking

Two state-of-the-art online P-RID re-ranking methods,

OL [45] and RR [43], are compared with our M3 since

all the three methods can be readily utilized at online test-

ing stage for further performance improvement. The com-

parison results in Table. 4 show that the query-specific

method OL [45] works better on improving Rank@1 per-
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Method Market1501 → DukeMTMC DukeMTMC → Market1501

R@1 R@5 R@10 R@20 mAP R@1 R@5 R@10 R@20 mAP

MLFN[5] 45.8 63.9 71.6 78.1 20.3 30.4 47.5 53.9 59.5 17.1

MLFN+M3 67.6 78.8 83.0 86.6 32.7 43.7 57.0 62.6 68.2 24.7

DenseNet121[13] 41.0 56.6 62.8 68.5 23.2 55.0 71.3 78.5 84.3 25.3

DenseNet121+M3 53.1 67.1 72.1 75.7 32.7 76.9 85.6 89.1 91.9 40.4

HA-CNN[18] 43.3 59.7 66.7 74.6 18.9 24.0 39.0 45.1 51.6 13.5

HA-CNN+M3 61.6 73.6 78.7 82.9 25.8 37.6 51.9 56.8 62.8 20.5

Table 5. Cross-dataset validation results with(+M3) our M3 model on Market1501 and DukeMTMC-reID. Market1501 → DukeMTMC

mean using the model trained on Market1501 to evaluate DukeMTMC-reID.

Method CUHK03 Market1501 DukeMTMC-reID MSMT17

R@1 R@20 mAP R@1 R@20 mAP R@1 R@20 mAP R@1 R@20 mAP

HA-CNN[18] 48.0 85.4 47.6 90.6 98.3 75.3 80.7 94.3 64.4 64.7 87.1 37.2

Our only w/ Mq 63.4 87.6 63.5 93.8 98.8 81.2 83.9 95.3 69.0 68.7 88.7 40.6

Our only w/ Mg 65.4 86.2 57.3 94.2 98.4 79.1 83.6 94.4 65.7 66.3 86.4 37.5

Our-Full 69.8 88.8 63.5 96.5 98.9 85.2 87.1 95.8 72.2 74.3 90.0 43.8

Table 6. The influence of each component in our M3 algorithm.

formance but has little improvement on mAP due to the

lack of gallery-specific local discriminant enhancement. In

contrast, since RR [43] considers the k-reciprocal nearest

neighbors of both query and gallery data, it achieves a large

improvement on mAP but with limited improvement on

Rank@1 owing to the lack of instance-specific local adapta-

tion. Our M3 outperforms the other two approaches signifi-

cantly at both Rank@1 and mAP due to the fully utilization

of both the group-level visual similarity sharing information

and instance-specific local discriminant enhancement.

5.4. Cross­Set Generalization Ability Validation

We explore the generalization ability of our proposed

M3. We claim the improvement by M3 is from the test-

ing sample itself which is independent of how the baseline

models are trained. Therefore we conduct a cross-set gener-

alization ability validation experiment as shown in Table. 5.

Following the setting in [44], the baseline model trained by

Market1501 with our M3 is evaluated on DukeMTMC-reID

and vice versa. The results show our M3 model is able to

consistently and significantly improve the baseline perfor-

mance regardless of whether the baseline is trained by the

same-source data or not.

5.5. Ablation Study

The Influence of Model Components: The final re-

trieval performance of Eqn. 11 relies on a bi-directional

retrieval matching, so the influence of each component is

shown in Table. 6. As can be seen, by only keeping the

query-specific metric adaptation Mq or the gallery-centric

one Mg , we still can achieve a significant improvement.

While by performing a full-model bi-directional matching,

the performance is further boosted by a large margin which

demonstrates the necessity of bi-directional local discrimi-

nant enhancement. More visualizations are shown in Fig. 4.

The Influence of λ in Eqn. 11: The weighting parame-

ter λ in Eqn. 11 aims to balance the importance of Mq and

Mg . The full CMC curves w.r.t λ of HA-CNN on CUHK03,

Market1501 and DukeMTMC-reID are plotted in Fig. 5 re-

spectively. As can be seen, setting λ = 1 gives the best

performance since we perform a max-normalization to both

Mq and Mg , over-weighting either side is prone to suppress

the other side’s impact.

6. Conclusion

Unlike previous online P-RID works, in this paper, we

propose a novel online joint multi-metric adaptation algo-

rithm which not only takes individual characteristics of test-

ing samples into consideration but also fully utilizes the vi-

sual similarity relationships among both query and gallery

samples. Our M3 method can be readily applied to any ex-

isting P-RID baselines with the guarantee of performance

improvement, and a theoretical sound optimization solution

to M3 keeps a low online computational burden. Compared

with the other state-of-the-art online P-RID refinement ap-

proaches, our method achieves significant improvement on

Rank@1(mAP) performance. Moreover, by implementing

our method to the state-of-the-art baselines, their perfor-

mance is further boosted by a large margin on four chal-

lenging large-scale P-RID benchmarks.
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