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Abstract

Despite the success in still image recognition, deep neu-

ral networks for spatiotemporal signal tasks (such as human

action recognition in videos) still suffers from low efficacy

and inefficiency over the past years. Recently, human ex-

perts have put more efforts into analyzing the importance of

different components in 3D convolutional neural networks

(3D CNNs) to design more powerful spatiotemporal learn-

ing backbones. Among many others, spatiotemporal fusion

is one of the essentials. It controls how spatial and tem-

poral signals are extracted at each layer during inference.

Previous attempts usually start by ad-hoc designs that em-

pirically combine certain convolutions and then draw con-

clusions based on the performance obtained by training

the corresponding networks. These methods only support

network-level analysis on limited number of fusion strate-

gies. In this paper, we propose to convert the spatiotempo-

ral fusion strategies into a probability space, which allows

us to perform network-level evaluations of various fusion

strategies without having to train them separately. Besides,

we can also obtain fine-grained numerical information such

as layer-level preference on spatiotemporal fusion within

the probability space. Our approach greatly boosts the ef-

ficiency of analyzing spatiotemporal fusion. Based on the

probability space, we further generate new fusion strate-

gies which achieve the state-of-the-art performance on four

well-known action recognition datasets.

1. Introduction

For numerous video applications, such as action recog-

nition [31, 43, 33], video annotation [41] and person re-

identification [37], spatiotemporal fusion is an integral com-

ponent. Taking action recognition as an example, the spa-

tiotemporal fusion in deep networks can be roughly clas-

sified into two main categories: fusion/ensemble of two

modalities (i.e, spatial semantics in RGB and temporal dy-

namics in optical flow) in a two-stream architecture [31, 23]

and fusion of spatial and temporal clues in single-stream 3D
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Figure 1: Spatiotemporal fusions in 3D CNNs. (a) Exem-

plified fusion methods reported in the literature, which are

designed empirically and evaluated by training each cor-

responding network. (b) The proposed probabilistic ap-

proach. We propose to analyze the spatiotemporal fusion

by finding a probability space where each individual fusion

strategy is considered as a random event with a meaning-

ful probability. We first introduce a template network based

on basic fusion units to support a variety of fusion strate-

gies. We then embed all possible fusion strategies into the

probability space defined by the posteriori distribution over

fusion strategy. As a result, various fusion strategies can be

evaluated/analyzed without separate network training to ob-

tain network-level observations and layer-level preference.

Here S, ST and S + ST are basic fusion units instantiated

by 2D, 3D, and a mix of 2D/3D convolutions, respectively.

CNNs [29, 43]. In this paper, we focus on the latter.

Conceptually, 3D CNNs are capable of learning spa-

tiotemporal features responding to both appearance and

movement in videos. Recent research also shows that pure

3D CNNs can outperform 2D ones on large scale bench-

marks [7]. However, we still observe noticeable variations

in accuracy by employing additional spatial or temporal

∗ This work was performed while Yizhou Zhou was an intern with

Microsoft Research Asia. † Corresponding author.
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feature learning explicitly in 3D CNNs. As shown at the

top of Fig. 1, different spatiotemporal fusion strategies

[29, 21, 36, 27, 43] have been studied and recommended

for action recognition. They explore spatial semantics and

temporal dynamics in videos through the combinations of

different types of basic convolution unit at each layer in

3D CNNs. Though with different conclusions, these works

have one thing in common - they draw conclusions based

on the performance of networks employing one or several

fusion strategies designed empirically [27, 36, 26]. Each

fusion strategy is predefined, fixed, and evaluated in each

individual network, leading to a network-level analysis of

fusion strategies. Due to the proliferation of combinations

and prohibitive computational costs, it is difficult for exist-

ing solutions to simulate a great number of fusion strategies

for evaluation, nor can they support fine-grained and layer-

level analysis.

In this paper, we propose to analyze the spatiotemporal

fusion in 3D CNNs from a different point of view, i.e., a

probabilistic one. To be specific, we make the spatiotempo-

ral fusion analysis an optimization problem, aiming to find

a probability space where each individual fusion strategy

is treated as a random event and assigned with a meaning-

ful probability. The probability space will be constructed

to meet the following requirements. First, the effectiveness

of each spatiotemporal fusion strategy (event) can be eas-

ily derived from the probability space, so that we can ana-

lyze all the fusion strategies based on the derived effective-

ness rather than training each network defined by each fu-

sion strategy. Second, from the probability which is closely

correlated with the performance of each fusion strategy, it

should be able to deduce the layer-level metrics of the fu-

sion efficiencies, making it possible to perform layer-level,

fine grained analysis of fusion strategies. Now, the question

becomes how we build this probability space.

Recent research shows that optimizing a neural network

with dropout (applied on every channel of kernel weights)

is mathematically equivalent to the approximation to the

posteriori distribution over the network weights [5] and

architectures [42]. It inspires us to construct the proba-

bility space via dropout in 3D CNNs. In our approach,

we propose to first design a template network based on

basic fusion units. We define the basic unit as different

forms of spatiotemporal convolutions in 3D CNNs, e.g.,

spatial, spatiotemporal, and spatial+spatiotemporal convo-

lutions, as illustrated in Fig. 1. The probability space can

then be defined by the posteriori distribution on different

sub-networks (fusion strategies) along with their associated

kernel weights in the template network. Note that in our

fusion analysis, we need to approximate posteriori distribu-

tion on basic fusion units rather than on kernels as in [5].

Therefore, based on the variational Dropout [15] and Drop-

Path [16], we present a Variational DropPath (v-DropPath)

by using a variational distribution which factorizes over the

probability of the dropout operations that are applied on ev-

ery basic fusion unit. Then the posterior distribution can

be inferred by minimizing the Kullback-Leibler (KL) diver-

gence between the variational distribution and the posteriori

distribution, which proves to be equivalent to optimizing the

template network with the v-DropPath. We will show that

such a probability space fully satisfies the two requirements

mentioned above in Section 3.1 and 3.3.

Once we obtain such distribution, we acquire a variety

of fusion strategies from the template network by execut-

ing v-DropPath w.r.t. its optimized drop probability. Those

fusion strategies can be directly evaluated without training.

In addition, we also utilize the derived probability space to

provide numerical measurements for layer-level spatiotem-

poral fusion preference.

Experimental results show that our proposed prob-

abilistic approach can produce very competitive fusion

strategies to obtain state-of-the-art results on four widely

used databases on action recognition. It also provides

general and practical hints on the spatiotemporal fusion

that can be applied to 3D networks with different back-

bones, such as ResNet[9], MobileNet[22], ResNeXt[35]

and DenseNet[10], and achieve good performance.

In summary, our work has four main contributions:

1. We are the first to investigate the spatiotemporal fusion

in 3D CNNs from a probabilistic view. Our proposed

probabilistic approach enables a highly efficient and

effective analysis on varieties of spatiotemporal fusion

strategies. The layer-level fine-grained numerical anal-

ysis on spatiotemporal fusion also becomes possible.

2. We propose the Variational DropPath to construct the

desired probability space in an end-to-end fashion.

3. New spatiotemporal fusion strategies are constructed

based on the probability space and achieve the state-of-

the-art performance on four well-known action recog-

nition datasets.

4. We also show that the hints on spatiotemporal fusion

obtained from the probability space are generic and

suitable for benefiting different backbone networks.

2. Related Work

Spatiotemporal fusion has been widely investigated in

various tasks and frameworks [21, 18, 44]. In this paper,

we choose one of its typical scenarios, i.e., action recogni-

tion, to discuss the related work. We further roughly group

the spatiotemporal fusion methods for action recognition

into two categories: fusion in two-stream (RGB and optical

flow) CNNs and fusion in single 3D CNNs. Due to space

limitations, here we review only the most related work -

spatiotemporal fusion in single 3D CNNs.
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There exists a considerable body of literature on spa-

tiotemporal fusion in 3D CNNs. Some of these works

show that the efficiency of 3D CNNs can be improved

by empirically decoupling the spatiotemporal feature learn-

ing in a specific way [29, 3, 21, 43, 4, 45, 2, 13]. For

example, Wang et al. [29] present the fusion method

that utilizes 3D convolution with square-pooling to capture

the appearance-independent relation and 2D convolution to

capture the static appearance information. These two fea-

tures are then concatenated and fed into a 1x1 convolution

to form new spatiotemporal features. Results show that this

fusion method can significantly improve the performance

with model size and FLOPs similar to the original 3D archi-

tecture. Feichtenhofer et al. [3] also propose a fusion ap-

proach which combines the 3D and 2D CNNs. They use 2D

convolution (with more channels) to capture rich spatial se-

mantics from individual frames at lower frame rate, and fac-

torized 3D convolution to extract motion information from

frames at high temporal resolution which is fused by lateral

connection to the 2D semantics. Zhou et al. [43] present a

mixed 3D/2D convolutional tube, MiCT-block, which inte-

grates 2D CNNs with 3D convolution via both concatenated

and residual connections in 3D CNNs. It encourages each

3D convolution in 3D network to extract temporal resid-

ual information by adding its outputs to the spatial semantic

features captured by 2D convolutions.

Instead of presenting one specific fusion strategy, some

other work investigates the spatiotemporal fusion in 3D

CNNs by evaluating a group of pre-defined fusion methods

[27, 36, 26]. For instance, four fusion methods are con-

structed, trained and evaluated individually in [36] includ-

ing bottom-heavy-I3D, top-heavy-I3D as shown in Fig.1.

More fusions such as mixed convolutions and reversed

mixed convolutions are investigated in a similar way in

[27, 26]. Although with meaningful observations, these

methods can only analyze a limited number of fusion strate-

gies, provide network-level hints, and suffer from huge

computational costs.

In contrast to all the above presented methods, in this

paper, we propose to construct a probabilistic space that en-

codes all possible spatiotemporal fusion strategies under a

predefined network topology. It not only provides a much

more efficient way to analyze a variety of fusion strategies

without training them individually, but also facilitates the

fine-grained numerical analysis on the spatiotemporal fu-

sion in 3D CNNs.

3. Spatiotemporal Fusion in Probability Space

We observe that a fusion strategy in an L-layer 3D CNN

can be expressed with a set of triplets {(l,v, u)}L, where

l (1 ≤ l ≤ L) is the layer index, v is a binary vector of

length l − 1 denoting the features from which layer/layers

will be used, and u (u ∈ U ) denotes the basic fusion units
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Figure 2: Exemplified triplet representations {(l,v, u)} of

three spatiotemporal fusion strategies reported in literature.

employed in the current layer. Here U is defined by a set of

basic fusion units. For example, U can be the combination

of three modes, Spatial (S), temporal (T), and spatiotempo-

ral (ST), i.e., U = {S, T, ST, S + T, S + ST, T + ST, S +
T + ST}. As concrete examples, existing fusion strategies

can be well represented by the triplets, e.g., top-heavy struc-

ture [36], SMART-block[29]/MiCT-block [43] and global

diffusion structure [21], as shown in Fig. 2, respectively.

3.1. The Probability Space

As discussed in the introduction, we construct the prob-

ability space with the posteriori distribution over different

fusion strategies along with their associated kernel weights.

In the probability space, M = {(l,v, u)}L should be a ran-

dom event. We also define WM to be the kernel weight of

the corresponding strategy M, which is also a random event

in such space. Therefore, we give the full definition of the

probability space denoted with (Ω,B,F), where

• Sample space Ω = {(M,WM)}, which is the set of

all possible outcomes from the probability space.

• A set of events B = {(M,WM)}, where each event is

equivalent to one outcome in our case.

• Probability measure function F . We use the posteriori

distribution to assign probabilities to the events as

F := P(M,WM | D), (1)

where D = {X,Y } indicates the data samples X and

ground-truth label Y used for training.

In this probability space, various fusion strategies and

their associated kernel weights are sampled as pairs and we

can make direct evaluation without training. The overall

performance of one strategy can be obtained only at the cost

of network testing. Therefore, the first requirement for the

probability space is satisfied. Now, The core of embedding

spatiotemporal fusion strategies into such probability space

is to derive the measure function defined in Eq. 1.
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3.2. Embedding via Variational DropPath

It is hard to obtain the posteriori distribution in Eq. (1),

as usual. In our approach, we present a variational Bayesian

method to approximate it. We first build a template net-

work based on the basic fusion units that will be studied in

the spatiotemporal fusion. For instance, we can design a

densely connected 3D CNN with U = {S, ST, S+ST}, as

shown in Fig. 1. We then incorporate a variational distribu-

tion that factorizes over every basic unit in the template net-

work, which are re-parameterized with kernel weight mul-

tiplying a dropout rate. We further propose the v-DropPath

inspired by [15, 5, 42] that enables us to minimize the KL

distance between the variational distribution and the poste-

riori distribution via training the template network. More

details will be presented below.

By incorporating the template network, the posterior dis-

tribution in Eq. (1) can be converted to

P(M,WM | D) −→ P(M̂ ◦WT | D), (2)

where ◦ is the Hadamard product (with broadcasting), M̂ ∈
(0, 1)L×L×3 is a binary random matrix and M̂(l, i, u) =
1/0 denotes that the feature from the layer i and the fu-

sion unit u is enabled/disabled at layer l in the template net-

work, respectively. WT ∈ R
L×L×3×V denotes the random

weight matrix of the template network, where we use V to

denote kernel shape for simplicity. This conversion actually

integrates the kernel weights into fusion strategies. Since

we can fully recover the M from the embedded version

M̂ ◦WT (it is because the kernel is defined in real number

field, the probability of being zero for every element can be

ignored), the first requirement is still satisfied.

We then approximate the posteriori distribution by mini-

mizing the KL divergence

KL(Q(M̂ ◦WT ) || P(M̂ ◦WT | D)), (3)

where Q(·) denotes a variational distribution. Instead

of factorizing the variational distribution over convolution

channels as in [5], we factorize Q(M̂ ◦ WT ) over fusion

units in each layer as
∏

l,i,u

q(M̂(l, i, u) ·WT (l, i, u, :)). (4)

By re-parameterising the q(M̂(l, i, u) · WT (l, i, s, :)) with

ǫl,i,u · wl,i,u, where ǫl,i,u ∼ Bernoulli(pl,i,u) and wl,i,u is

the deterministic weight matrix associated with the random

weight matrix WT (l, i, u, :), minimizing Eq. 3 is approxi-

mately equivalent to minimizing

− 1

N
logP(Y | X,w · ǫ) + 1

N

∑

l,i,u

pl,i,u log pl,i,u

+
∑

l,i,u

(kl,i,u)
2(1− pl,i,u)

2N
‖wl,i,u‖2,

(5)

where kl,i,u is a pre-defined length-scale prior and N is

the number of training samples. The gradients w.r.t. the

Bernoulli parameters p are computed through Gumbel-

Softmax [12]. For step-by-step proofs of Eq. 5, please refer

to our supplementary material.

Eq. 5 reveals that approximating the posteriori distribu-

tion can be achieved by training the template 3D network

where each spatial or temporal convolutions is masked by

a logit ǫ subject to Bernoulli distribution with probability

p. It is exactly the drop-path proposed in [16]. But here

both the network weight and the drop rate need to be opti-

mized. We adopt Gumbel-Softmax for the indifferentiable

Bernoulli distribution to enable a gradient-based solution.

Please find more details in supplementary material.

3.3. Spatiotemporal Fusion

Once the probability space defined by the posteriori dis-

tribution is obtained, we can investigate the spatiotemporal

fusion very efficiently at both the network and layer levels.

Network-level. Conventionally, the network-level fu-

sion strategies are explored by training and evaluating each

individual network defined by one fusion strategy. In our

scheme, we successfully eliminate the individual training

and evaluation by using the embedded probability space.

We study the fusion strategies by directly sampling a group

of strategy and kernel weight pairs {(M,WM)t | t =
1, 2, ...} with

M,WM ∼ P(M̂ ◦WT | Dtr) ≈ Q(M̂ ◦WT ). (6)

It is doable since each (M,WM)t can be fully recovered

from the embedded version M̂ ◦ WT . The above sample

process is equivalent to randomly choosing ǫl,i,u based on

the Bernoulli distribution with the optimized pl,i,u as de-

fined in Eq. 5, which is further equivalent to randomly drop-

ping some paths in the template network. The effective-

ness of each fusion strategy can then be easily derived from

the test performance on a validation dataset. Because the

sampling and evaluation are light-weight, our approach can

greatly expand both the number and form of fusion strate-

gies for analysis.

Layer-level. The network-level analysis shows the over-

all effectiveness of different spatiotemporal fusion strate-

gies, but rarely reveals the importance of the fusion strate-

gies at each layer. Interestingly, numerical metrics for such

fine-grained, layer-level information are also achievable in

our approach. Recall that we factorize the variational dis-

tribution in Eq. 4 over different fusion strategies using

the reparametrisation trick [15]. We thus can deduce the

marginal probability of fusion unit at each layer as

P(M̂(l, i, u) = 1 | D) = 1−√
pl,i,u. (7)

Please refer to supplementary material for detailed deriva-

tion. Eq. 7 suggests that the marginal distribution of a spa-
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Figure 3: The densely connected template network used in

our experiments. In each layer, there are three DropPath

(D) operations. The combination of D2 and D3 deduces

the three basic fusion units {S, ST, and S + ST }. The

operations on D1 and D2/D3 correspond to the index i and

u in ǫl,i,u, respectively.

tiotemporal fusion strategy can be retrieved from the opti-

mized dropout probability. It indicates the probability of

using a fusion unit among all the possible networks that can

interpret the given dataset well and satisfy prior constrains

(sparsity in our case). We propose using this number as

the indicator of the layer-level spatiotemporal preference.

Therefore, the second requirement on the probability space

is met, too.

4. Experiments

In this section, we will verify the effectiveness of our

probabilistic approach from three aspects. Four action

recognition databases are used in the experiments. After

the description of experimental setups, we will first show

the performance of the fusion strategies obtained by our ap-

proach in comparison with those of state-of-the-arts. Then

several main observations are provided based on the analy-

sis of different fusion strategies generated from our proba-

bility space. At last, we verify the robustness of the obtained

spatiotemporal fusion strategies on different backbone net-

works.

4.1. Experimental Setups

Template Network. Fig. 3 sketches the basic struc-

ture of the template network designed for our approach.

The template network is a densely connect one that com-

prises of mixed 2D and 3D convolutions. Here we choose

U = {S, ST, S + ST} so that the fusion units explored in

our approach are conceptually included in most of other fu-

sion methods for fair comparison. We also factorize each

3D convolution with a 1D convolution and a 2D convolu-

tion, and use element-wise summation to fuse the 2D and

3D convolutions for simplicity. Besides, we add several

transition blocks to reduce the dimension of features and

the total number of layers is set to be 121 as in [10]. We put

more details of the template network in the supplementary

material. In practice, we share the variational probability

on the variables i defined in Section. 3 for computational

efficiency.

Datasets. We apply the proposed scheme on four

well-known action recognition datasets, i.e., Something-

Something(V1&V2)[6], Kinetics400[14] and UCF101[24].

Something V1/V2 consist of around 86k/169k videos for

training and 12k/25k videos for validation, respectively.

Video clips in these two datasets are first-person videos with

174 categories that focus more on temporal modelling. Ki-

netics400 is a large-scale action recognition database which

provides around 240k training samples and 20k validation

samples from 400 classes. UCF101 has around 9k and 3.7k

videos for training and validation. They are categorized into

101 classes. Both the Kinetics400 and the UCF101 contain

complex scene and object content in video clips and have

large temporal redundancy.

Training. As mentioned before, we approximate the

posteriori distribution of different fusion strategies by train-

ing the template network with v-DropPath. We initialize

the drop rate of each convolution operation as 0.1. We

train the template network with 90 epochs for Something-

Something(V1&V2)/UCF101 and 110 epochs for Kinet-

ics400, respectively. The batch size is 64 for Kinetics

and 32 for the others. The initial learning rates are 0.005

(Something&UCF) and 0.01 (Kinetics) and we decay them

by multiplying 0.1 at 40th, 60th, 80th epochs for Some-

thing/UCF and 40th, 80th epochs for Kinetics. The video

frames are all resized to 256 (short edge) and randomly

cropped to 224x224. The length-scale prior k in Eq. 5 is de-

termined by grid search, where k = 250 for SomethingV1,

k = 10 for Kinetics400 and k = 50 for the rest. In practice,

warmup is used before training the template network with v-

DropPath, i.e., removing all the v-DropPath operations and

training the template network from scratch for 50 epochs.

All experiments are conducted with distributed settings and

synchronized Batch Normalization [11] on multiple (8-32)

v100 GPUs with 32G memory.

Sampling and Inference. We derive various spatiotem-

poral fusion strategies from the probability space through

sampling different combinations of spatiotemporal convo-

lutions w.r.t. the drop probability of v-DropPath. The sam-

pled strategies are directly evaluated on validation dataset.

During the inference of each spatiotemporal fusion strat-

egy, we resize the short edge of the input video frames to

256 and make center crop to get a 256x256 region. We uni-

formly sample multiple clips in a video and average the pre-

diction scores to obtain video level predictions. The number

of clips varies from dataset to dataset and will be discussed

along with the results.
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Table 1: Performance evaluation on Something-Something V1. Im./K.400 denote ImageNet/Kinetics400 pre-training.

Method Backbone Extra Mod. Pretrain #F FLOPs #Param. Top-1 Top-5

TSN[31] BNInception - Im. 8 16G 10.7M 19.5% -

TSN[17] ResNet50 - Im. 8 33G 24.3M 19.7% 46.6%

TRN-Multiscale[40] BNInception - Im. 8 16G 18.3M 34.4% -

TRN-Multiscale[17] ResNet50 - Im. 8 33G 31.8M 38.9% 68.1%

Two-stream TRN[40] BNInception - Im. 16 - 36.6M 42.0% -

TSM[17] ResNet50 - Im. 16 65G 24.3M 47.2% 77.1%

TrajectoryNet[39] 3D Res.18 Y Im.+K.400 - - x 47.8% -

STM[13] 3D Res.50 Y Im. 16 66.5G 24.0M 49.8% -

Non-local I3D[32] 3D Res.50 Y Im. 64 336G 35.3M 44.4% 76.0%

Non-local I3D + GCN[32] 3D Res.50+GCN Y Im. 64 606G 62.2M 46.1% 76.8%

S3D-G[36] 3D BNincept.+gate Y Im. 64 71G 11.6M 48.2% 78.7%

I3D[32] 3D Res.50 N Im. 64 306G 28.0M 41.6% 72.2%

I3D[36] 3D BNIncept. N Im. 64 108G 12.0M 45.8% 76.5%

S3D[36] 3D BNIncept. N Im. 64 66G 8.77M 47.3% 78.1%

ECO[45] BNIncept.+3DRes.18 N Im.+K.400 8 32G 47.5M 39.6% -

ECO[45] BNIncept.+3DRes.18 N Im.+K.400 16 64G 47.5M 41.4% -

ECO Lite[45] BNIncept.+3DRes.18 N Im.+K.400 92 267G 150M 46.4% -

Ours 3D DenseNet121 N Im. 16 31G 21.4M 50.2% 78.9%

Table 2: Ablation studies on the selected spatiotemporal fu-

sion strategies from our probability space.

Dataset

Strategy
S ST S+ST Opt

SomethingV1 41.8% 47.5% 46.5% 50.2%

SomethingV2 55.1% 60.5% 59.5% 62.4%

UCF101 83.6% 83.1% 84.2% 84.2%

Kinetics400 67.8% 68.3% 69.7% 71.7%

4.2. Ablation Study

In order to demonstrate the effectiveness of our proba-

bility space, for each dataset, we sample 100 fusion strate-

gies from the constructed space and choose the best one

according to the performance on the held-out validation

dataset. We denote the best strategy as ‘Optimized’(Opt).

We then compare it with its counter-part strategies ‘S’,‘ST’,

and ‘S+ST’ in Fig. 2, which are designed with one fixed

corresponding basic fusion unit, S, ST , or S + ST , at all

layers, respectively. It can be observed that our probabil-

ity space can generate better strategies on all the dataset.

Our ‘Opt’ method even outperforms its counter-part ‘ST+S’

which has more parameters and higher FLOPs.

4.3. Comparisons with the State­of­the­arts

Our proposed method analyzes the spatiotemporal fusion

strategies from the perspective of the probability. It not only

enables an advance analysis approach, but also achieves

high-performance spatiotemporal fusion strategies. In this

section, we compare the strategies drawn from the prob-

ability space with state-of-the-art fusion methods on four

action recognition datasets. Our approach has very compet-

itive performance, i.e., performing the best among all the

schemes on three of these datasets and obtaining the second

best on UCF101, even though some of the compared results

are achieved with better backbones and/or with extra mod-

ules such as non-local, motion encoder, or gated functions.

Something-Something V1&V2. Table. 1 exhibits the

performance of different spatiotemporal fusion methods on

Something V1 dataset. It shows that our approach leads to

the fusion strategy that outperforms all the other schemes

including so far the most advanced 3D network S3D by

a large margin with 50% fewer FLOPs and frames. Sur-

prisingly, it performs even better than those methods with

carefully designed functional modules, e.g., STM employs

a channel-wise motion module to explicitly encode motion

information, and Non-local I3D + GCN explicitly incorpo-

rates the object semantics with graphs. Similar results can

be observed on the recently released dataset Something V2.

As shown in Table. 3, our fusion strategies significantly

outperform the conventional I3D solutions and its bottom-

heavy and top-heavy counterparts which incorporates 3D

convolutions in bottom layers and top layers, respectively.

We employ ImageNet pre-training for both datasets and our

fusion strategy can achieve higher accuracy than those pre-

trained on the large-scale dataset Kinetics such as ECO.

Kinetics400. Accuracy achieved by different fusion

methods on Kinetics400 are reported in Table 4. In order to

make apple-to-apple comparisons, all methods are trained

from scratch. It can be observed that our configuration of

spatiotemporal fusion outperforms the second best R(2+1)D

on Top1 accuracy with 97% fewer FLOPs , where R(2+1)D

is a 3D network that uses ResNet34 as backbone. Compared

with R(2+1)D, we actually utilize more spatial convolutions

in the shallow layers as can be viewed in Fig. 4.
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Table 3: Performance comparison with state-of-the-art re-

sults on Something-Something V2.

Method Val. Top-1 Val. Top-5

TSN[17] 30.0% 60.5%

MultiScale TRN[40] 48.8% 77.6%

Two-stream TRN[40] 55.5% 83.1%

TSM(ImageNet+ Kinetics400)[17] 59.1% 85.6%

TSM dual attention[34] 55.5% 82.0%

I3D-ResNet50[34] 43.8% 73.2%

2D-3D-CNN w/ LSTM [19] 51.6% -

Ours (ImageNet) 62.9% 88.0%

Table 4: Performance comparison with the state-of-the-art

results of different spatiotemporal fusions in 3D architec-

tures on Kinetics400 trained from the scratch.

Method Backbone FLOPs Top1 Top5

STC[2] R.Xt101 N/A × N/A 68.7% 88.5%

ARTNet[29] ResNet18 23.5G × 250 69.2% 88.3%

R(2+1)D[27] ResNet34 152G × 115 72.0% 90.0%

S3D*[36] BNIncept. 66.4G × 250 69.4% 89.1%

I3D[1] BNIncept. 216G × N/A 68.4% 88.0%

ECO[45] custom N/A × N/A 70.0% 89.4%

3DR.Xt[7] R.Xt101 N/A × N/A 65.1% 85.7%

Disentan.[38] BNIncept. N/A × N/A 71.5% 89.9%

StNet [8] ResNet101 311G x 1 71.4% -

Ours Dense.121 254G × 2 72.5% 90.3%

UCF101. Since UCF101 has only 9k training videos,

we make evaluations with the ImageNet pre-training and

Kinetics400 pre-training, respectively. When incorporating

ImageNet pre-training only, our fusion strategy produces

the most advanced results, which has 1.5% higher accu-

racy than the I3D that performs pure spatiotemporal fusions.

When using Kinetics400 as pre-training dataset, the overall

performance is still state-of-the-art. Please note that we do

not employ any extra functional module here, so the perfor-

mance is slightly worse (0.3%) than the most advanced 3D

networks S3D-G that incorporates attention mechanism.

4.4. Observations

We visualize the strategies derived from the probability

space that have the highest accuracy on the test datasets in

Fig. 4. We also illustrate the marginal probability of us-

ing different basic units in each layer based on Eq. 7. The

amplitude of bars in blue, green and yellow indicates the

marginal probability of using the units S, ST and S + ST
in each layer, respectively. The dotted-line in orange shows

the selected layer-level basic fusion units that produce the

best accuracy. From these figures, we observe that

Observation I. As indicated by the colored bars, the unit

S + ST has higher marginal probability in the lower-level

feature learning compared with the other two units. The

dotted line in orange also shows a similar trend. The S +

Table 5: Performance comparison with the state-of-the-art

results on UCF101. Im., S.1M and K.400 denote ImageNet,

Sport1M and Kinetics400, respectively. Our methods with

ResNeXt50 and Inception backbones are designed accord-

ing to the hints we observe from the probability space.

Please refer to Section 4.4 and 4.5 for details.

Method Pre. Backbone Top-1

TDD[30] Im. VGG-M 82.8%

C3D[25] Im. 3DVGG11 44.0%

LTC[28] Im. 3DVGG11 59.9%

ST-ResNet[4] Im. 3DRes.50 82.3%

I3D[1] Im. 3DIncept. 84.5%

Ours Im. 3DDenseNet121 85.0%

Ours Im. 3DRexNeXt50 86.0%

Res3D[26] S.1M 3DRes.18 85.8%

P3D[20] S.1M 3DRes.199 88.6%

MiCT[43] S.1M 3DIncept. 88.9%

Res3D[26] K.400 3DRes.18 89.8%

TSN[31] K.400 Incept.V3 93.2%

I3D[1] K.400 3DIncept. 95.6%

ARTNet[29] K.400 3DRes.18 94.3%

R(2+1)D[27] K.400 3DRes.34 96.8%

S3D-G[36] K.400 3DIncept. 96.8%

3DResNeXt101[7] K.400 - 94.5%

STM[13] K.400 3D Res.50 96.2%

STC[2] K.400 3DResNext101 96.5%

Ours K.400 3DDenseNet121 94.5%

Ours K.400 3DIncept. 96.5%

ST unit has the highest percentage of total usage in all the

fusion units, especially in the lower layers. It suggests that a

proper spatiotemporal fusion strategy can be designed based

on S + ST units, particularly in lower layers.

Observation II. More ST units are preferred in higher

layers as there is a higher marginal probability on the ST
unit in the higher-level feature learning (except on UCF101

which will be discussed below).

Observation III. Additional S units could be beneficial

when scene semantics are complex. For instance, Kinet-

ics400/UCF101 contain videos in the wild with 400/101

different categories, respectively. The scene content is more

complex than that in the first-person videos in Something-

Something. By comparing Fig. 4 (c) and (d) with the others,

it shows that more S or S + ST units are selected.

4.5. Generalization

We further discuss the generalization of our observa-

tions as well as the selected fusion strategies. We extend

our fusion strategies to three backbone networks including

ResNet50[9], and ResNeXt50/ResNeXt101[35]. They dif-

fer from each other in terms of topology, parameter size and

FLOPs. We report clip-level accuracy on Something V1 for

quick comparison. Please find more results and discussions

on other backbone networks in the supplementary material.
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(a) Something-Something V1

(c) UCF101

(b) Something-Something V2

(d) Kinetics400

Spatial Spatiotemporal Spatial+Spatiotemporal Optimized

Figure 4: Visualization of our spatiotemporal fusion strategies and marginal probabilities of layer level fusion units. On the

top of each sub-figure, we show the fusion strategy derived from the probability space that has the highest accuracy by the

dotted line in orange. Three units, S, ST and S + ST , are involved as shown on the right side of each sub-figure. The

amplitude of bars in blue, green and yellow indicates the marginal probability of using the basic units S, ST and S + ST in

each layer, respectively. The x-axis indexes layers, where B denotes dense blocks and L is the layer index in the block.

Table 6: Generalization of the observations. The fusion

strategies ‘Opt’ for each backbone are straightforwardly de-

signed based on the observations.

Net.

Strategy
S ST S+ST Opt

3D ResNet50 33.8% 40.1% 38.9% 41.2%

3D ResNeXt50 35.2% 42.1% 40.7% 43.6%

3D ResNeXt101 36.6% 42.7% 42.3% 44.0%

We employ four different fusion strategies ‘Opt’,

‘S+ST’, ‘S’ and ‘ST’ as defined in Section 4.2 for compar-

ison. Note that here the fusion strategy denoted by ‘Opt’ is

not optimized using our probabilities approach but straight-

forwardly designed based on our observations. Specifically,

we construct the fusion strategy ‘Opt’ according to Fig. 4

(a) and (b), which uses S+ST unit in both the first half and

the last three layers, and ST unit in the remaining layers.

As shown in Table. 6, the fusion method ‘Opt’ performs the

best among all the evaluated fusion strategies.

5. Conclusion and Discussion

In this paper, we convert the problem of analyzing spa-

tiotemporal fusion in 3D CNNs into an optimization prob-

lem which aims to embed all possible fusion strategies into

the probability space defined by the posteriori distribution

on each fusion strategy along with its associated kernel

weights. Such probability space enables us to investigate

spatiotemporal fusion from a probabilistic view, where var-

ious fusion strategies are evaluated and analyzed without

the needs of individual network training. The numerical

measurements on layer-level fusion preference are avail-

able. By further proposing the Variational DropPath, the

optimization problem can be efficiently solved via train-

ing a template network. Experimental results on four ac-

tion recognition databases demonstrate the effectiveness of

our approach. We also observe several useful hints with

our probabilistic approach which can be extended to design

high performance fusion strategies on different backbones.
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