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Abstract

We introduce AdaCoSeg, a deep neural network archi-

tecture for adaptive co-segmentation of a set of 3D shapes

represented as point clouds. Differently from the familiar

single-instance segmentation problem, co-segmentation is

intrinsically contextual: how a shape is segmented can vary

depending on the set it is in. Hence, our network features

an adaptive learning module to produce a consistent shape

segmentation which adapts to a set. Specifically, given an

input set of unsegmented shapes, we first employ an offline

pre-trained part prior network to propose per-shape parts.

Then, the co-segmentation network iteratively and jointly

optimizes the part labelings across the set subjected to a

novel group consistency loss defined by matrix ranks. While

the part prior network can be trained with noisy and incon-

sistently segmented shapes, the final output of AdaCoSeg is

a consistent part labeling for the input set, with each shape

segmented into up to (a user-specified) K parts. Overall,

our method is weakly supervised, producing segmentations

tailored to the test set, without consistent ground-truth seg-

mentations. We show qualitative and quantitative results

from AdaCoSeg and evaluate it via ablation studies and

comparisons to state-of-the-art co-segmentation methods.

1. Introduction

With the proliferation of data-driven and deep learning

techniques in computer vision and computer graphics, re-

markable progress has been made on supervised image [1,3]

and shape segmentations [11,33]. Co-segmentation is an in-

stance of the segmentation problem where the input consists

of a collection, rather than one piece, of data and the collec-

tion shares certain common characteristics. Typically, for

shape co-segmentation, the commonality is that the shapes

all belong to the same category, e.g., chairs or airplanes.

The goal of co-segmentation is to compute a consistent

segmentation for all shapes in the input collection. The

consistency of the segmentation implies a correspondence

between all the segmented parts, which is a critical re-

quirement for knowledge and attribute transfer, collecting

Shape generation via part reshuffling Shape generation via part reshuffling

Figure 1. Our adaptive shape co-segmentation network,

AdaCoSeg, produces structurally different segmentations (here up

to 4 parts) for two sets of chairs — one with armrests, one with-

out. For each set, the segmentations are semantically consistent,

allowing shape generation via part reshuffling. However, the same

shape can be segmented differently depending on its containing

set (see the circled chair), showing the method’s adaptivity.

statistics over a dataset, and structure-aware shape model-

ing [18]. Figure 1 shows such a modeling example based

on part reshuffling induced by a co-segmentation.

In contrast to the familiar single-instance segmentation

problem, a distinctive feature of co-segmentation is that it is

inherently contextual. As dictated by the consistency crite-

rion, the same shape may be segmented differently depend-

ing on which input set it belongs to; see Figure 1. From

this perspective, the input shape collection serves both as

the test set and the training set. Ideally, the co-segmentation

network can quickly adapt to a new input set without expen-

sive retraining. Such an adaptive network would change its

behavior, i.e., the network weights, at the time it is run. This

is different from the traditional label learning paradigm,

where the trained model strives to generalize to new inputs

without changing the network weights, either under the su-

pervised [11, 20] or weakly supervised settings [5, 19, 26].

In this paper, we introduce a deep neural network for

shape co-segmentation, coined AdaCoSeg, which is de-

signed to be adaptive. AdaCoSeg takes as input a set of

unsegmented shapes represented as point clouds, proposes

per-shape parts in the first stage, and then jointly optimizes

the parts subject to a novel group consistency loss defined

by matrix rank estimates for the specific input set. The
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output is a K-way consistent part labeling for each shape,

where K is a user-specified hyperparameter for the net-

work. The network weights are initialized randomly and it-

eratively optimized via backpropagation based on the group

loss.

While the co-segmentation component is unsupervised,

guided by the group consistency loss, we found that the re-

sults can be improved by adding a weak regularizing prior

to boost the part proposal. Specifically, we pre-train a part

prior network which takes as input a possibly noisy pro-

posed part, represented by an indicator function over the

complete point cloud, and denoises or “snaps” it to a more

plausible and clean part. The part prior network is simi-

lar to the pairwise potential of a conditional random field

(CRF) in traditional segmentation [12]: while it is not a gen-

eral prior, as it is trained to remove only a small amount of

noise, it suffices for boundary optimization. It is trained on a

large collection of segmented 3D shapes, e.g., ShapeNet [2],

where part counts and part compositions within the same

object category can be highly inconsistent. No segment la-

bel is necessary: the model is label-agnostic.

Overall, our method is weakly supervised, since it pro-

duces consistent segmentations without consistent ground-

truth segmentations. It consists of an offline, supervised

part prior network, which is trained once on inconsistently

segmented, unlabeled shapes, and a “runtime”, adaptive co-

segmentation network which is unsupervised and executed

for each input set of shapes. It is important to note that con-

sistency of the segmentations is not tied to the part count

K, but to the geometric and structural features of the shape

parts in the set, with K serving as an upper bound for the

part counts; see Figure 1. On the other hand, adjusting K

allows AdaCoSeg to produce consistent co-segmentations

at varying levels of granularity; see Figure 7.

Our part prior network is trained using the dataset

from ComplementMe [25]; the adaptive co-segmentation

is unsupervised. For evaluation only, we also adopt two

datasets [30, 32] containing ground truth co-segmentations.

While offline training required up to 20 hours to complete,

it takes about 7 minutes to co-segment 20 shapes at a reso-

lution of 2,048 points per shape. We show qualitative and

quantitative results from AdaCoSeg and evaluate it through

ablation studies and comparisons with state-of-the-art co-

segmentation methods. Our main contributions include:

• The first DNN for adaptive shape co-segmentation.

• A novel and effective group consistency loss based on

low-rank approximations.

• A co-segmentation training framework that needs no

ground-truth consistent segmentation labels.

2. Related work

Deep learning for shape segmentation. Deep models for

supervised shape segmentation have been developed for

Part classifier
Part prior 
module

Optimize

Part feature 

encoder

Part prior 

module

Part Prior Network

Co-segmentation Network

Part feature 

encoder

Group consistency loss

Figure 2. AdaCoSeg consists of a part prior network (top) and a co-

segmentation network (bottom). The part feature encoder and part

prior module in the first network learn a weak regularizing prior

to denoise proposed part shapes. The co-segmentation network is

trained with a novel group consistency loss, defined on a set of

shapes, based on the ranks of part similarity matrices.

various representations, such as voxel grids [21, 29], point

clouds [9, 15, 20], multi-view projections [11], and surface

meshes [28,33]. The key is to replace hand-crafted features

employed in traditional methods by features learned from

data. However, these models are mostly trained to target

a fixed set of semantic labels. The resulting segmentation

for a given shape is also fixed and cannot be adaptive to

the context of a shape set, a key feature of co-segmentation.

Relatively few works study deep learning for unsupervised

shape segmentation [5, 23].

Image co-segmentation. The co-segmentation of a pair

or a group of 2D images has been studied for many years in

the field of computer vision, where the main goal is to seg-

ment out a common object from multiple images [27]. Most

works formulate this problem as a multi-image Markov

Random Field (MRF), with a foreground consistency con-

straint. Recently, Li et al. [16] proposed a deep Siamese

network to achieve object co-extraction from a pair of im-

ages. The general problem setting for all of these image

co-segmentation works is significantly different from ours.

Shape co-segmentation. Extensive research has been de-

voted to co-analysis of sets of shapes [6, 7, 8, 24, 30, 31].

These methods often start with an over-segmentation and

perform feature embedding and clustering of the over-

segmented patches to obtain a consistent segmentation.

While most of these methods are unsupervised, their anal-

ysis pipelines all adopt hand-craft features and heuristic-

based clustering, often leading to unnatural results amid

complex part or structure variations.

Recently, deep learning based approaches are emerging.

Shu et al. [23] use deep auto-encoders for per-part fea-

ture learning. However, their co-segmentation module does

not use a deep network and it strictly constrains the final
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segmentations to parts learned in the first stage. In con-

trast, AdaCoSeg does not strictly adhere to proposals by

the part prior network, as the consistency loss can impact

and adjust part labeling. Muralikrishnan et al. [19] pro-

pose a weakly-supervised method for tag-driven 3D shape

co-segmentation, but their model is trained to target a pre-

defined label set. Sung et al. [26] attempt to relate a set

of shapes with deep functional dictionaries, resulting in a

co-segmentation. However, these dictionaries are learned

offline, for individual shapes, so their model cannot adap-

tively co-segment a set of shapes. In contrast, CoSetNet is

split into an offline part which is transferrable across dif-

ferent shape sets, and an online, adaptive co-segmentation

network which is learned for a specific input set.

In concurrent work, Chen et al. [5] present a branched

autoencoder for weakly supervised shape co-segmentation.

The key difference is that BAE-NET is essentially a more

advanced part prior network, with each branch tasked to

learn a simple representation for one universal part of an

input shape collection; there is no explicit optimization for

group consistency. As a result, BAE-NET tends to under-

perform comapred to AdaCoSeg on small input sets and in

the presence of large part discrepancies; see Figure 11.

3. Overview

Our method works with point-set 3D shapes and formu-

lates shape segmentation as a point labeling problem. The

network has a two-stage architecture; see Figure 2.

Part prior network. The network takes as input a point

cloud with noisy binary labeling, where the foreground rep-

resents an imperfect part, and outputs a regularized labeling

leading to a refined part. To train the network, we employ

the ComplementMe dataset [25], a subset of ShapeNet [2],

which provides semantic part segmentation. The 3D shapes

are point sampled, with each shape part implying a binary

labeling. For each binary labeling, some random noise is

added; the part prior network is trained to denoise these bi-

nary labelings. Essentially, the part prior network learns

what a valid part looks like through training on a labeling

denoising task. Meanwhile, it also learns a multi-scale and

part-aware shape feature at each point, which can be used

later in the co-segmentation network.

Co-segmentation network. Given an input set of 3D

shapes represented by point clouds, our co-segmentation

network learns the optimal network weights through back-

propagation based on a group consistency loss defined over

the input set. The network outputs a K-way labeling for

each shape, with semantic consistency, where K is a user

prescribed network parameter specifying an upper bound of

part counts; the final part counts are determined based on

the input shape set and network optimization.

The co-segmentation network is unsupervised, without

any ground-truth consistent segmentations. For each part

generated by the K-way classification, a binary segmenta-

tion is formed and fed into the pre-trained part prior net-

work: (1) to compute a refined K-part segmentation, and

(2) to extract a part-aware feature for each point. These

together form a part feature for each segment. The corre-

sponding part features with the same label for all shapes in

the set constitute a part feature matrix. Then, weights of

the co-segmentation network are optimized with the objec-

tive to maximize the part feature similarity within one label

and minimize the similarity across different labels. This

amounts to minimizing the rank of the part feature matrix

for each semantic label while maximizing the rank of the

joint part feature matrix for two semantic labels.

4. Method

The offline stage of AdaCoSeg learns a weak regulariz-

ing prior for plausible shape parts, where a part prior net-

work is trained on a large, diverse shape repository with

generally inconsistent, unlabeled segmentations. The net-

work serves to refine any proposed parts to better resemble

observed ones. The runtime stage jointly analyzes a set of

test shapes using a co-segmentation network that iteratively

proposes (at most) K-way segmentations of each shape to

optimize a group consistency score over the test set.

4.1. Part Prior Network

Dataset. In offline pre-training, we want to learn a general

model to denoise all plausible part shapes at all granulari-

ties, using off-the-shelf data available in large quantities.

This weak prior will be used to regularize any consistent

segmentation of test shapes. Repositories with standard la-

beled segmentations [30, 32] are both limited in size and

fixed at single pre-decided granularities. Instead, we use

the 3D part dataset developed for ComplementMe [25].

This dataset, a subset of ShapeNet [2], exploits the fact

that shapes in existing 3D repositories already have basic

component structure, since artists designed them modularly.

However, the segmentations are inconsistent: while a chair

back may be an isolated part in one shape, the back and

seat may be combined into a single part in another. Com-

plementMe does some basic heuristic-based merging of ad-

jacent parts to eliminate very small parts from the collec-

tion, but otherwise leaves noisy part structures untouched.

Further, the parts lack labels – while some tags may be

present in the input shapes, we ignore them since the text is

generally inconsistent and often semantically meaningless.

Hence, this dataset is an excellent example of the weakly-

supervised training data we can expect in a real-life situ-

ation. Our method trains a denoising prior on this noisy

dataset, which will be used to refine consistent segmenta-

tions proposed in our co-segmentation stage.
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Figure 3. The architecture of the part prior network. The network

encodes a shape with noisy part labeling and the whole shape, us-

ing the MSG and MRG feature encoders from PointNet++ [20],

respectively. It is trained to denoise the input binary labeling and

output a clean labeling, indicating a plausible part.

Network architecture. The part prior network learns to

denoise an imperfectly segmented part, using an architec-

ture based on components from PointNet++ [20]. The input

to the network is a 3D point cloud shape S. Points belong-

ing to the proposed part constitute the foreground F ⊂ S,

while the remaining points are the background B = S \ F .

The output of the network is a probability for each point

q ∈ S, such that the high probability points collectively de-

fine the ideal, “clean” part that best matches the proposed

part, thereby denoising the noisy foreground.

The architecture of our network is shown in Figure 3.

The point cloud is processed by the multi-scale grouping

(MSG) and multi-resolution grouping (MRG) modules of

PointNet++, to produce two context-sensitive 128-D fea-

ture vectors fMSG(q) and fMRG(q) for each point q ∈ S.

The MSG module captures the context of a point at multi-

ple scales, by concatenating features over larger and larger

neighborhoods. The MRG module computes a similar

multi-scale feature, but (half of) the features of a large

neighborhood are computed recursively, from the features

of the next smaller neighborhood; see [20] for details.

We average the MSG features of foreground points to

obtain a robust descriptor ffg, which is concatenated with

the MRG feature of each point to produce [fMRG(q), ffg]
pairs. The pairs are fed to a binary classifier with ReLU

activation, where the output of the classifier indicates the

“cleaned” foreground and background.

Training. The part prior network is trained with single

parts from the inconsistently segmented dataset. We add

noise to each part (foreground) by randomly inserting some

background points and excluding some foreground points

(∼20-30%). The network takes noisy parts as input and

tries to output clean part indicator functions, using a nega-

tive log-likelihood loss and Adam [14] optimizer.

4.2. Co­segmentation Network

The runtime stage of our pipeline jointly segments a set

of unsegmented test shapes T = {S1, S2, . . . , SN} to maxi-

mize consistency between the segmented parts. To this end,

we design a deep neural network that takes a shape’s point

cloud as input and outputs a K-way segmentation; K is

a user-specified hyperparameter specifying the part count.

These outputs are compared across the test set to ensure ge-

ometric consistency of corresponding segments: our quan-

titative metric for this is a group consistency energy, which

is used as a loss function to iteratively refine the output of

the network using back-propagation.

Note that although we use a deep network to output per-

shape segmentation maps, the trained network is not ex-

pected to generalize to new shape sets. Hence, the network

performs essentially an unsupervised K-way clustering of

the input points across all test shapes. Apart from the con-

sistency loss, the network is guided by the offline prior that

has learned to denoise plausible parts of various sizes, but

has no notion of consistency or desired granularity.

Network architecture. Our co-segmentation architecture

is shown in Figure 4. The network takes a minibatch of

test shapes as input. The first part of the network is a clas-

sifier that independently assigns one of K abstract labels

{L1, L2, . . . , LK} to each point in each shape, with shared

weights: the set of points in a shape with label Li defines a

single part with that label. Since the classifier output may be

noisy, we pass the binary foreground/background map cor-

responding to each such part through the pre-trained (and

frozen) offline denoising network (Section 4.1) and then re-

compose these maps into a K-way map using a K-way soft-

max at each point to resolve overlaps. The recomposed out-

put is the final (eventually consistent) segmentation.

The subsequent stages of the network are deterministic

and have no trainable parameters: they are used to compute

the group consistency energy. First, the MSG features [20]

of the foreground points for each part are max-pooled to

yield a part descriptor (we found max pooling to work bet-

ter than average pooling). If the segmentation is consis-

tent across shapes, all parts with a given label Li should

have similar descriptors. Therefore, we stack the descrip-

tors for all parts with this label from all shapes in a matrix

Mi, one per row, and try to minimize its second singular

value, a proxy for its rank (low rank = more consistent).

Also, parts with different labels should be distinct, so the

union of the rows of matrices Mi and Mj 6=i should have

high rank. This time, we want to maximize the second sin-

gular value of concat(Mi,Mj), where the concat function

constructs a new matrix with the union of the rows of its

inputs. The overall energy function is:

Ecoseg = 1 + max
i∈{1,2,...,K}

rank(Mi)

− min
i,j∈{1,2,...,K},i 6=j

rank (concat(Mi,Mj)) ,

where the rank function is the second singular value,

computed by a (rather expensive) SVD decomposition [34].
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Figure 4. Left: Given an input point cloud, the K-way classifier segments it into K parts. These parts are then refined by the part prior

module, resulting in a refined K-way segmentation of the input point cloud. After that, the part feature encoder is used to extract features

for each refined part. Right: Given a set of input point clouds, we construct a part similarity matrix for each abstract part label, based on

the part features extracted for all shapes.

As this energy is optimized by gradient descent, the initial

layers of the network learn to propose more and more con-

sistent segmentations across the test dataset. Additionally,

we found that gaps between segments of a shape appeared

frequently and noticeably before re-composition, and were

resolved arbitrarily with the subsequent softmax. Hence,

we add a second energy term that penalizes such gaps; see

more details in the supplementary material.

Because the co-segmentation network has no access to

ground truth and relies only on a weak geometry denoising

prior, the consistency energy is the principal high-level in-

fluence on the final segmentation. We experimented with

different ways to define this energy, and settled on SVD-

based rank approximation as the best one. Note that the

SVD operation makes this a technically non-decomposable

loss, which usually needs special care to optimize [13].

However, consistency is in general a transitive property

(even though its converse, inconsistency, is not). Hence,

enforcing consistency over each of several overlapping

batches is sufficient to ensure consistency over their union,

and we can refine the segmentation maps iteratively using

standard stochastic gradient descent.

5. Results and Evaluations

We validate the two stages of AdaCoSeg through qual-

itative and quantitative evaluation, and compare to state-

of-the-art methods. We train our part prior network on

the shape part dataset from ComplementMe [25], which

is a subset of ShapeNet [2], and test our method with the

ShapeNet [32] and COSEG [30] semantic part datasets.

We also manually labeled some small groups (6-12 shapes

per group) of shapes from ShapeNet [32] to form a co-

segmentation benchmark for quantitative evaluation.

0%

20%

40%

60%

80%

100%
2 parts

3 parts

4 parts

5 parts

6 parts

7 parts

8 parts

Figure 5. High degrees of inconsistencies exist in the shape seg-

mentations available in the ComplementMe dataset [25]. The left

figure charts the distribution of part counts in each object category,

showing their diversity. The right figure shows several shapes,

within the same category and having the same part counts (3 parts

for airplanes, 4 parts for chairs), that exhibit much structural and

geometric variation in their segmentations.

Table 1. Dataset for training the part prior network. For each cate-

gory, we list the shape count (#S) and part count (#P).

Airplane Bicycle Car Chair Lamp Table

#S 2,410 49 976 2,096 862 1,976

#P 9,134 299 5,119 9,433 3,296 6,608

Discriminative power of matrix ranks. Our network de-

sign makes a low-rank assumption for the features of corre-

sponding shape parts: the MSG feature vectors of similar

parts form a low-rank matrix, while those dissimilar parts

form a higher-rank matrix, where rank is estimated in a con-

tinuous way as the magnitude of the second singular value.

To show that matrix ranks provide a discriminative metric,

we use the ShapeNet semantic part dataset [32], which has

a consistent label for each part, as test data. The chair cat-

egory for this dataset has four labels: back, seat, arm and

leg. From each of the 14 (=
(

4

1

)

+
(

4

2

)

+
(

4

3

)

) non-empty
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Figure 6. Number of distinct labels in a collection of parts (Y axis)

vs increasing feature variation for that collection (X axis). The

plot on the right uses the more discriminative matrix rank-based

score, whereas the plot on the left uses MSE which cannot tell 2

and 3-label collections apart.

proper subsets of labels, we randomly sample a collection

of 200 labeled parts. Our hypothesis is that matrix rank

should make it easy to distinguish between collections with

few distinct labels, and collections with many distinct la-

bels. Figure 6 (right) plots the number of distinct labels

in the part collection, vs increasing rank estimates. As we

can see, all part collections with a single label have a lower

score than those with two labels, which in turn are all lower

than those with 3 labels. In contrast, a naive variance met-

ric such as mean squared error, as shown in Figure 6 (left),

cannot correctly discriminate between part collections with

2 and 3 labels. We conclude that our rank-based metric ac-

curately reflects consistency of a part collection.

Control, adaptivity, and generalization. AdaCoSeg is

not strongly supervised with consistently segmented and

labeled training data, unlike most prior deep networks for

shape segmentation. Instead, the weakly-supervised part

prior allows a fair amount of input-dependent flexibility in

what the actual co-segmentation looks like.

First, we can generate test set segmentations with dif-

ferent granularities, controlled by the cardinality bound K.

Figure 7 shows co-segmentation of the same shapes for dif-

ferent values of K. In these examples, our method fortu-

itously produces coarse-to-fine part hierarchies. However,

this nesting structure is not guaranteed by the method, and

we leave this as future work.

Further, even for a fixed K, different test shape collec-

tions can induce different co-segmentations. Figure 1 shows

co-segmentations of two different chair collections, both

with K = 4. The collection on the left has several chairs

with arms: hence, the optimization detects arms as one of

the prominent parts and groups all chair legs into a single

segment. The other collection has no arms, hence the four

part types are assigned to back, seat, front, and back legs.

Quantitative evaluation. Since AdaCoSeg produces seg-

mentations with varying granularity, it is difficult to com-

pare its results to a fixed ground truth segmentation,

e.g., [30]. We adopt the following strategy. First, we set

K to be the total number of ground truth labels for a shape

category. Second, after segmentation, we manually map

our abstract labels {L1, L2, . . . , LK} to the semantic labels

Figure 7. Coarse-to-fine co-segmentations of the same input

shapes, generated by setting K = 2, 3, 4. The actual part count

discovered per shape is adaptively selected and need not be ex-

actly K, as shown in the examples bounded in red.

(arm, back, wing etc) present in the ground truth, using vi-

sual inspection of a few example shapes (this step could be

automated, but it would not affect the overall argument).

Now we can apply the standard Rand Index metric [4] for

segmentation accuracy:

RI = 1−

(

2

N

)−1
∑

i<j

(CijPij + (1− Cij)(1− Pij))

where i, j are different points of the input point cloud.

Cij = 1 iff i and j have the same predicted label, and

Pij = 1 iff they have the same ground truth label. A lower

Rand Index implies a better match with the ground truth.

Note that the main advantage of RI over IOU is that it com-

putes segmentation overlap without needing segment corre-

spondence. This makes it particularly suited for evaluating

co-segmentation where the focus is on segmentation consis-

tency without knowing part labeling or correspondence.

In Table 2, we compare the Rand Index scores of our

method vs prior work [7, 23, 24]. Since our method trains

category-specific weak priors by default, we evaluate on

those categories of COSEG that are also present in the Com-

plementMe component dataset. Our method works natively

with point clouds, whereas the three prior methods all have

access to the original mesh data. Even so, we demonstrate

the greatest overall accuracy (lowest RI).

To demonstrate that AdaCoSeg does not rely on the ini-

tial training segmentations for the part prior network, we

present a quantitative consistency evaluation between the

initial segmentations and our co-segmentation results on a

subset of our training data; the ground truth of this evalu-

ation is labeled by experts. Table 3 shows that AdaCoSeg
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Figure 8. A gallery of co-segmentation results obtained by AdaCoSeg, for all the six object categories from the ComplementMe dataset.

The input sets vary in size from 7 to 10. More results can be found in the supplementary material.

Training Data

Training Data

Co-segmentation

Results

Co-segmentation

Results

Figure 9. Co-segmentation results obtained by AdaCoSeg when

using inconsistent training data. First and third rows show seg-

mentations from the training data. Second and fourth rows show

the co-segmentation results obtained by our network.

can even improve the segmentation quality of its own train-

ing data. Figure 9 demonstrates a significant improvement

by our co-segmentation over the noisy training data. More

results can be found in supplemental material.

Ablation study. We explore the effect of our design

choices via several ablation studies and show some results

in Figure 10. These design choices include:

• No part prior: Remove the part prior network and con-

nect the K-way classifier to point feature encoder.

• No de-noise: No random noise is added when training

of our part prior network.

• No segmentation completeness loss: Optimize Ada-

CoSeg by using only the group consistency loss.

• No contrastive term in group consistency loss: Only

keep the second term in our loss function.

• MSG vs. MRG for part feature encoder: Using MRG

instead of MSG for encoding each shape part.

We found that the loss cannot decrease significantly

without the part prior module and the contrastive term dur-

ing training. Refer to the supplemental material for visual

segmentation results without the part prior. Further, the de-

noising is also important for training our co-segmentation

network. Finally, we found that the MSG feature for the

part encoder, which focuses more on local than global con-

texts, can achieve better performance over MRG in our task.

Comparison to BAE-NET. Figure 11 visually compares

AdaCoSeg with one-shot learning of BAE-NET [5] using

one perfect exemplar, on a small test set of 9 chairs; more

comparison results can be found in the supplementary ma-

terial. Both methods can be regarded as weakly supervised

but with different supervision strategies. Our experiments

show that with explicit optimization adapted to input sets,

using the group consistency loss, AdaCoSeg generally out-

performs BAE-NET over small test sets and in the presence

of strong part discrepancies.

8549



Category AdaCoSeg Shu Hu Sidi

Chair 0.055 0.076 0.121 0.135
Lamp 0.059 0.069 0.103 0.092
Vase 0.189 0.198 0.230 0.102

Guitar 0.032 0.041 0.037 0.081

Table 2. Rand Index scores for AdaCoSeg vs. prior works. With

the exception of the vases, AdaCoSeg performs the best. The

hand-crafted features from Sidi et al. [24] prove to be best suited

to the vase category.

Chair Table Bicycle Lamp Car Plane

GT 0.21 0.27 0.31 0.18 0.38 0.24

Ours 0.09 0.14 0.22 0.16 0.27 0.13

Table 3. Rand Index score comparison between segmentations in

training data (GT) and AdaCoSeg results. AdaCoSeg improves

consistency even in its own training data. Visual results can be

found in supplemental material.

No part prior

Figure 10. Training rank loss for ablation study on significant fea-

tures. See supplemental material for more evaluation.

Figure 11. Comparing AdaCoSeg with BAE-NET on a small test

set. AdaCoSeg, without needing any exemplars, leads to improved

accuracy over BAE-NET with one exemplar.

6. Conclusion, limitation, and future work

We present AdaCoSeg, an adaptive deep learning frame-

work for shape co-segmentation. A novel feature of our

method is that beyond offline training by the part prior ne-

towk, the online co-segmentation network is adaptive to the

input set of shapes, producing a consistent co-segmentation

by iteratively minimizing a group consistency loss via back-

propagation over a deep network. Experiments demonstrate

robustness of AdaCoSeg to large degrees of geometric and

structural variations in the input sets, which is superior to

state of the art.

No ground-truth consistent co-segmentations are needed

to train AdaCoSeg. The offline and online stages are trained

on different datasets, and for different tasks. The only su-

pervision is at the first stage, to denoise part proposals on

an individual shape basis, where the training can be carried

out using existing datasets composed of inconsistent seg-

mentations, e.g., [25]. The second optimizes a consistent

segmentation on a specific test set, with the part prior as a

regularizer. Our two-stage pipeline conserves computation

by training the weak prior only once and reusing it across

different co-segmentation tasks.

We reiterate that our online co-segmentation network

does not generalize to new inputs, which is by design: the

network weights are derived to minimize the loss function

for the current input set and they are recomputed for each

new set. Also, AdaCoSeg is not trained end-to-end. While

an end-to-end deep co-segmentation network is desirable,

the challenges of developing such networks for an unsu-

pervised problem are well known [17]. Another limitation

is that our part prior network is not trained across differ-

ent object categories. This would have been ideal, but per-

category training is typical for most existing segmentation

models [9, 15, 21, 29]. Our current network appears capa-

ble of handling some intra-category variations, but learning

parts and their feature descriptions with all categories mixed

together is significantly more challenging.

In future work, we plan to extend our weakly supervised

learning framework for cross-category part learning. We

would also like to explore co-segmentation via online learn-

ing, which represents a family of machine learning algo-

rithms that learn to update models incrementally from se-

quentially input data streams [10, 22]. In contrast, our cur-

rent co-segmentation network does not really learn a gen-

eralizable model, and the learned network weights cannot

be continuously updated as new shapes come in. An online

learned model for unsupervised co-segmentation may need

to create and maintain multiple segmentation templates.
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