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Abstract

In this paper, we show that extending the butterfly opera-

tions from the FFT algorithm to a general Butterfly Trans-

form (BFT) can be beneficial in building an efficient block

structure for CNN designs. Pointwise convolutions, which

we refer to as channel fusions, are the main computational

bottleneck in the state-of-the-art efficient CNNs (e.g. Mo-

bileNets [15, 38, 14]).We introduce a set of criterion for

channel fusion, and prove that BFT yields an asymptoti-

cally optimal FLOP count with respect to these criteria.

By replacing pointwise convolutions with BFT, we reduce

the computational complexity of these layers from O(n2)
to O(n log n) with respect to the number of channels. Our

experimental evaluations show that our method results in

significant accuracy gains across a wide range of network

architectures, especially at low FLOP ranges. For example,

BFT results in up to a 6.75% absolute Top-1 improvement

for MobileNetV1[15], 4.4% for ShuffleNet V2[28] and 5.4%
for MobileNetV3[14] on ImageNet under a similar number

of FLOPS. Notably, ShuffleNet-V2+BFT outperforms state-

of-the-art architecture search methods MNasNet[43], FBNet

[46] and MobilenetV3[14] in the low FLOP regime.

1. Introduction

Devising Convolutional Neural Networks (CNN) that can

run efficiently on resource-constrained edge devices has be-

come an important research area. There is a continued push

to put increasingly more capabilities on-device for personal

privacy, latency, and scale-ability of solutions. On these

constrained devices, there is often extremely high demand

for a limited amount of resources, including computation

and memory, as well as power constraints to increase battery

life. Along with this trend, there has also been greater ubiq-

uity of custom chip-sets, Field Programmable Gate Arrays

(FPGAs), and low-end processors that can be used to run

CNNs, rather than traditional GPUs.

A common design choice is to reduce the FLOPs and

parameters of a network by factorizing convolutional lay-

ers [15, 38, 28, 50] into a depth-wise separable convolution

Figure 1: Replacing pointwise convolutions with BFT in state-of-the-art

architectures results in significant accuracy gains in resource constrained

settings.

that consists of two components: (1) spatial fusion, where

each spatial channel is convolved independently by a depth-

wise convolution, and (2) channel fusion, where all the spa-

tial channels are linearly combined by 1 × 1 convolutions,

known as pointwise convolutions. Inspecting the computa-

tional profile of these networks at inference time reveals that

the computational burden of the spatial fusion is relatively

negligible compared to that of the channel fusion[15]. In

this paper we focus on designing an efficient replacement

for these pointwise convolutions.

We propose a set of principles to design a replacement

for pointwise convolutions motivated by both efficiency and

accuracy. The proposed principles are as follows: (1) full

connectivity from every input to all outputs: to allow outputs

to use all available information, (2) large information bot-

tleneck: to increase representational power throughout the

network, (3) low operation count: to reduce the computa-

tional cost, (4) operation symmetry: to allow operations to be

stacked into dense matrix multiplications. In Section 3, we

formally define these principles, and mathematically prove a

lower-bound of O(n log n) operations to satisfy these princi-

ples. We propose a novel, lightweight convolutional building

block based on the Butterfly Transform (BFT). We prove that

BFT yields an asymptotically optimal FLOP count under
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these principles.

We show that BFT can be used as a drop-in replacement

for pointwise convolutions in several state-of-the-art effi-

cient CNNs. This significantly reduces the computational

bottleneck for these networks. For example, replacing point-

wise convolutions with BFT decreases the computational

bottleneck of MobileNetV1 from 95% to 60%, as shown in

Figure 3. We empirically demonstrate that using BFT leads

to significant increases in accuracy in constrained settings, in-

cluding up to a 6.75% absolute Top-1 gain for MobileNetV1,

4.4% for ShuffleNet V2 and 5.4% for MobileNetV3 on the

ImageNet[7] dataset. There have been several efforts on us-

ing butterfly operations in neural networks [20, 6, 33] but, to

the best of our knowledge, our method outperforms all other

structured matrix methods (Table 2b) for replacing pointwise

convolutions as well as state-of-the-art Neural Architecture

Search (Table 2a) by a large margin at low FLOP ranges.

2. Related Work

Deep neural networks suffer from intensive computations.

Several approaches have been proposed to address efficient

training and inference in deep neural networks.

Efficient CNN Architecture Designs: Recent successes

in visual recognition tasks, including object classification,

detection, and segmentation, can be attributed to exploration

of different CNN designs [23, 39, 13, 21, 42, 17]. To make

these network designs more efficient, some methods have

factorized convolutions into different steps, enforcing dis-

tinct focuses on spatial and channel fusion [15, 38]. Further,

other approaches extended the factorization schema with

sparse structure either in channel fusion [28, 50] or spatial

fusion [30]. [16] forced more connections between the lay-

ers of the network but reduced the computation by designing

smaller layers. Our method follows the same direction of

designing a sparse structure on channel fusion that enables

lower computation with a minimal loss in accuracy.

Structured Matrices: There have been many methods

which attempt to reduce the computation in CNNs, [44, 24, 8,

19] by exploiting the fact that CNNs are often extremely over-

parameterized. These models learn a CNN or fully connected

layer by enforcing a linear transformation structure during

the training process which has less parameters and compu-

tation than the original linear transform. Different kinds of

structured matrices have been studied for compressing deep

neural networks, including circulant matrices[9], toeplitz-

like matrices[40], low rank matrices[37], and fourier-related

matrices[32]. These structured matrices have been used for

approximating kernels or replacing fully connected layers.

UGConv [51] has considered replacing one of the point-

wise convolutions in the ShuffleNet structure with unitary

group convolutions, while our Butterfly Transform is able

to replace all of the pointwise convolutions. The butterfly

structure has been studied for a long time in linear algebra

[34, 26] and neural network models [31]. Recently, it has

received more attention from researchers who have used it in

RNNs [20], kernel approximation[33, 29, 4] and fully con-

nected layers[6]. We have generalized butterfly structures

to replace pointwise convolutions, and have significantly

outperformed all known structured matrix methods for this

task, as shown in Table 2b.

Network pruning: This line of work focuses on reducing

the substantial redundant parameters in CNNs by pruning

out either neurons or weights [11, 12, 45, 2]. Our method is

different from these type methods in the way that we enforce

a predefined sparse channel structure to begin with and we do

not change the structure of the network during the training.

Quantization: Another approach to improve the efficiency

of the deep networks is low-bit representation of network

weights and neurons using quantization [41, 35, 47, 5, 52,

18, 1]. These approaches use fewer bits (instead of 32-bit

high-precision floating points) to represent weights and neu-

rons for the standard training procedure of a network. In the

case of extremely low bitwidth (1-bit) [35] had to modify

the training procedure to find the discrete binary values for

the weights and the neurons in the network. Our method is

orthogonal to this line of work and these method are com-

plementary to our network.

Neural architecture search: Recently, neural search

methods, including reinforcement learning and genetic al-

gorithms, have been proposed to automatically construct

network architectures [53, 48, 36, 54, 43, 27]. Recent search-

based methods [43, 3, 46, 14] use Inverted Residual Blocks

[38] as a basic search block for automatic network design.

The main computational bottleneck in most of the search

based method is in the channel fusion and our butterfly struc-

ture does not exist in any of the predefined blocks of these

methods. Our efficient channel fusion can be augmented

with these models to further improve the efficiency of these

networks. Our experiments shows that our proposed butter-

fly structure outperforms recent architecture search based

models on small network design.

3. Model

In this section, we outline the details of the proposed

model. As discussed above, the main computational bot-

tleneck in current efficient neural architecture design is in

the channel fusion step, which is implemented with a point-

wise convolution layer. The input to this layer is a tensor

X of size nin × h× w, where n is the number of channels
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Figure 2: BFT Architecture: This figure illustrates the graph structure of the proposed Butterfly Transform. The left figure shows the recursive procedure

of the BFT that is applied to an input tensor and the right figure shows the expanded version of the recursive procedure as logn Butterfly Layers in the

network.

and w, h are the width and height respectively. The size of

the weight tensor W is nout × nin × 1 × 1 and the output

tensor Y is nout × h × w. For the sake of simplicity, we

assume n = nin = nout. The complexity of a pointwise

convolution layer is O(n2wh), and this is mainly influenced

by the number of channels n. We propose to use Butterfly

Transform as a layer, which has O((n log n)wh) complexity.

This design is inspired by the Fast Fourier Transform (FFT)

algorithm, which has been widely used in computational

engines for a variety of applications and there exist many

optimized hardware/software designs for the key operations

of this algorithm, which are applicable to our method. In the

following subsections we explain the problem formulation

and the structure of our butterfly transform.

3.1. Pointwise Convolution as Matrix­Vector Prod­
ucts

A pointwise convolution can be defined as a function P
as follows:

Y = P(X;W) (1)

This can be written as a matrix product by reshaping the input

tensor X to a 2-D matrix X̂ with size n×(hw) (each column

vector in the X̂ corresponds to a spatial vector X[:, i, j]) and

reshaping the weight tensor to a 2-D matrix Ŵ with size

n× n,

Ŷ = ŴX̂ (2)

where Ŷ is the matrix representation of the output tensor Y.

This can be seen as a linear transformation of the vectors

in the columns of X̂ using Ŵ as a transformation matrix.

The linear transformation is a matrix-vector product and

its complexity is O(n2). By enforcing structure on this

transformation matrix, one can reduce the complexity of the

transformation. However, to be effective as a channel fusion

transform, it is critical that this transformation respects the

desirable characteristics detailed below.

Fusion network design principles: 1) full connectivity

from every input to all outputs: This condition allows every

single output to have access to all available information in the

inputs. 2) large information bottleneck: The bottleneck size

is defined as the minimum number of nodes in the network

that if removed, the information flow from input channels to

output channels would be completely cut off (i.e. there would

be no path from any input channel to any output channel).

The representational power of the network is bound by the

bottleneck size. To ensure that information is not lost while

passed through the channel fusion, we set the minimum

bottleneck size to n. 3) low operation count: The fewer

operations, or equivalently edges in the graph, that there are,

the less computation the fusion will take. Therefore we want

to reduce the number of edges. 4) operation symmetry: By

enforcing that there is an equal out-degree in each layer, the

operations can be stacked into dense matrix multiplications,

which is in practice much faster for inference than sparse

computation.

Claim: A multi-layer network with these properties has

at least O(n log n) edges.

Proof : Suppose there exist ni nodes in ith layer. Remov-

ing all the nodes in one layer will disconnect inputs from

outputs. Since the maximum possible bottleneck size is n,

therefore ni ≥ n. Now suppose that out degree of each

node at layer i is di. Number of nodes in layer i, which are

reachable from an input channel is
∏i−1

j=0 dj . Because of

the every-to-all connectivity, all of the n nodes in the output

layer are reachable. Therefore
∏m−1

j=0 dj ≥ n. This implies

that
∑m−1

j=0 log2(dj) ≥ log2(n). The total number of edges

will be:
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∑m−1
j=0 njdj ≥ n

∑m−1
j=0 dj ≥ n

∑m−1
j=0 log2(dj) ≥

n log2 n�
In the following section we present a network structure

that satisfies all the design principles for fusion network.

3.2. Butterfly Transform (BFT)

As mentioned above we can reduce the complexity of

a matrix-vector product by enforcing structure on the ma-

trix. There are several ways to enforce structure on the

matrix. Here we first explain how the channel fusion is done

through BFT and then show a family of the structured matrix

equivalent to this fusion leads to a O(n log n) complexity of

operations and parameters while maintaining accuracy.

Channel Fusion through BFT: We want to fuse informa-

tion among all channels. We do it in sequential layers. In the

first layer we partition channels to k parts with size n
k

each,

x1, ..,xk. We also partition output channels of this first layer

to k parts with n
k

size each, y1, ..,yk. We connect elements

of xi to yj with n
k

parallel edges Dij . After combining

information this way, each yi contains the information from

all channels, then we recursively fuse information of each

yi in the next layers.

Butterfly Matrix: In terms of matrices B(n,k) is a butter-

fly matrix of order n and base k where B(n,k) ∈ IRn×n is

equivalent to fusion process described earlier.

B(n,k) =









M
(n
k
,k)

1 D11 . . . M
(n
k
,k)

1 D1k

...
. . .

...

M
(n
k
,k)

k Dk1 . . . M
(n
k
,k)

k Dkk









(3)

Where M
(n
k
,k)

i is a butterfly matrices of order n
k

and

base k and Dij is an arbitrary diagonal n
k
× n

k
matrix. The

matrix-vector product between a butterfly matrix B(n,k) and

a vector x ∈ IRn is :

B(n,k)x =









M
(n
k
,k)

1 D11 . . . M
(n
k
,k)

1 D1k

...
. . .

...

M
(n
k
,k)

k Dk1 . . . M
(n
k
,k)

k Dkk















x1

...

xk







(4)

where xi ∈ IR
n
k is a subsection of x that is achieved by

breaking x into k equal sized vector. Therefore, the product

can be simplified by factoring out M as follow:

B(n,k)x =





















M
(n
k
,k)

1

∑k

j=1 D1jxj

...

M
(n
k
,k)

i

∑k

j=1 Dijxj

...

M
(n
k
,k)

k

∑k

j=1 Dkjxj





















=



















M
(n
k
,k)

1 y1

...

M
(n
k
,k)

i yi

...

M
(n
k
,k)

k yk



















(5)

where yi =
∑k

j=1 Dijxj . Note that M
(n
k
,k)

i yi is a smaller

product between a butterfly matrix of order n
k

and a vector

of size n
k

therefore, we can use divide-and-conquer to recur-

sively calculate the product B(n,k)x. If we consider T (n, k)
as the computational complexity of the product between a

(n, k) butterfly matrix and an n-D vector. From equation 5,

the product can be calculated by k products of butterfly ma-

trices of order n
k

which its complexity is kT (n/k, k). The

complexity of calculating yi for all i ∈ {1, . . . , k} is O(kn)
therefore:

T (n, k) = kT (n/k, k) +O(kn) (6)

T (n, k) = O(k(n logk n)) (7)

With a smaller choice of k(2 ≤ k ≤ n) we can achieve

a lower complexity. Algorithm 1 illustrates the recursive

procedure of a butterfly transform when k = 2.

Algorithm 1: Recursive Butterfly Transform

1 Function ButterflyTransform(W, X, n):

/* algorithm as a recursive function */
Data: W

Weights containing 2n log(n) numbers

Data: X

An input containing n numbers

2 if n == 1 then

3 return [X] ;

4 Make D11, D12, D21, D22 using first 2n numbers of W ;

5 Split rest 2n(log(n)− 1) numbers to two sequences

W1,W2 with length n(log(n)− 1) each.;

6 Split X to X1, X2;

7 y1 ←− D11X1 +D12X2;

8 y2 ←− D21X1 +D22X2;

9 My1 ←− ButterflyTransform(W1, y1, n− 1);
10 My2 ←− ButterflyTransform(W2, y2, n− 1);
11 return Concat(My1,My2);

3.3. Butterfly Neural Network

The procedure explained in Algorithm 1 can be represented

by a butterfly graph similar to the FFT’s graph. The butterfly

network structure has been used for function representation [25]

and fast factorization for approximating linear transformation [6].

We adopt this graph as an architecture design for the layers of a

neural network. Figure 2 illustrates the architecture of a butterfly

network of base k = 2 applied on an input tensor of size n×h×w.

The left figure shows how the recursive structure of the BFT as

a network. The right figure shows the constructed multi-layer

network which has log n Butterfly Layers (BFLayer). Note that

the complexity of each Butterfly Layer is O(n) (2n operations),

therefore, the total complexity of the BFT architecture will be

O(n log n).
Each Butterfly layer can be augmented by batch norm and non-

linearity functions (e.g. ReLU, Sigmoid). In Section 4.2 we study

the effect of using different choices of these functions. We found

that both batch norm and nonlinear functions (ReLU and Sigmoid)

are not effective within BFLayers. Batch norm is not effective
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Figure 3: Distribution of FLOPs: This figure shows that replacing the pointwise convolution with BFT reduces the size of the computational bottleneck.

mainly because its complexity is the same as the BFLayer O(n),
therefore, it doubles the computation of the entire transform. We

use batch norm only at the end of the transform. The non-linear

activation ReLU and Sigmoid zero out almost half of the values

in each BFLayer, thus multiplication of these values throughout the

forward propagation destroys all the information. The BFLayers

can be internally connected with residual connections in different

ways. In our experiments, we found that the best residual connec-

tions are the one that connect the input of the first BFLayer to the

output of the last BFLayer. The base of the BFT affects the shape

and the number of FLOPs. We have empirically found that base

k = 4 achieves the highest accuracy while having the same number

FLOPs as the base k = 2 as shown in Figure 5c.

Butterfly network satisfies all the fusion network design prin-

ciples. There exist exactly one path between every input channel

to all the output channels, the degree of each node in the graph is

exactly k, the bottleneck size is n, and the number of edges are

O(n log n).

We use the BFT architecture as a replacement of the point-

wise convolution layer (1 × 1 convs) in different CNN ar-

chitectures including MobileNetV1[15], ShuffleNetV2[28] and

MobileNetV3[14]. Our experimental results shows that under the

same number of FLOPs, the efficiency gain by BFT is more ef-

fective in terms of accuracy compared to the original model with

smaller channel rate. We show consistent accuracy improvement

across several architecture settings.

Fusing channels using BFT, instead of pointwise convolution

reduces the size of the computational bottleneck by a large-margin.

Figure 3 illustrate the percentage of the number of operations by

each block type throughout a forward pass in the network. Note that

when BFT is applied, the percentage of the depth-wise convolutions

increases by 8×.

4. Experiments

In this section, we demonstrate the performance of the pro-

posed BFT on large-scale image classification tasks. To show-

case the strength of our method in designing very small networks,

we compare performance of Butterfly Transform with pointwise

convolutions in three state-of-the-art efficient architectures: (1)

MobileNetV1, (2) ShuffleNetV2, and (3) MobileNetV3. We com-

pare our results with other type of structured matrices that have

O(n log n) computation (e.g. low-rank transform and circulant

transform). We also show that our method outperforms state-of-the

art architecture search methods at low FLOP ranges.

4.1. Image Classification

4.1.1 Implementation and Dataset Details:

Following standard practice, we evaluate the performance of But-

terfly Transforms on the ImageNet dataset, at different levels of

complexity, ranging from 14 MFLOPS to 150 MFLOPs. ImageNet

classification dataset contains 1.2M training samples and 50K vali-

dation samples, uniformly distributed across 1000 classes.

For each architecture, we substitute pointwise convolutions with

Butterfly Transforms. To keep the FLOP count similar between

BFT and pointwise convolutions, we adjust the channel numbers

in the base architectures (MobileNetV1, ShuffleNetV2, and Mo-

bileNetV3). For all architectures, we optimize our network by

minimizing cross-entropy loss using SGD. Specific learning rate

regimes are used for each architecture which can be found in the

Appendix. Since BFT is sensitive to weight decay, we found that

using little or no weight decay provides much better accuracy. We

experimentally found (Figure 5c) that butterfly base k = 4 per-

forms the best. We also used a custom weight initialization for the

internal weights of the Butterfly Transform which we outline below.

More information and intuition on these hyper-parameters can be

found in our ablation studies (Section 4.2).

Weight initialization: Proper weight initialization is critical

for convergence of neural networks, and if done improperly can

lead to instability in training, and poor performance. This is espe-

cially true for Butterfly Transforms due to the amplifying effect

of the multiplications within the layer, which can create extremely

large or small values. A common technique for initializing point-

wise convolutions is to initialize weights uniformly from the range

(−x, x) where x =
√

6
nin+nout

, which is referred to as Xavier

initialization [10]. We cannot simply apply this initialization to

butterfly layers, since we are changing the internal structure.
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(a)

Flops ShuffleNetV2 ShuffleNetV2+BFT Gain

14 M 50.86 (14 M)* 55.26 (14 M) 4.40

21 M 55.21 (21 M)* 57.83 (21 M) 2.62

40 M
59.70(41 M)*

60.30 (41 M)
61.33 (41 M)

1.63

1.03

(b)

Flops MobileNetV3 MobileNetV3+BFT Gain

10-15 M 49.8 (13 M) 55.21 (15 M) 5.41

(c)

Flops MobileNet MobileNet+BFT Gain

14 M 41.50 (14 M) 46.58 (14 M) 5.08

20 M 45.50 (21 M) 52.26 (23 M) 6.76

40 M
47.70 (34 M)

50.60 (41 M)
54.30 (35 M)

6.60

3.70

50 M 56.30 (49 M)
57.56 (51 M)

58.35 (52 M)

1.26

2.05

110 M 61.70 (110 M) 63.03 (112 M) 1.33

150 M 63.30 (150 M) 64.32 (150 M) 1.02

Table 1: These tables compare the accuracy of ShuffleNetV2, MobileNetV1 and MobileNetV3 when using standard pointwise convolution vs using BFTs

We denote each entry B
(n,k)
u,v as the multiplication of all the

edges in path from node u to v. We propose initializing the weights

of the butterfly layers from a range (−y, y), such that the multipli-

cation of all edges along paths, or equivalently values in B(n,k),

are initialized close to the range (−x, x). To do this, we solve for a

y which makes the expectation of the absolute value of elements of

B(n,k) equal to the expectation of the absolute value of the weights

with standard Xavier initialization, which is x/2. Let e1, .., elog(n)

be edges on the path p from input node u to output node v. We

have the following:

E[|B(n,k)
u,v |] = E[|

log(n)
∏

i=1

ei|] =
x

2
(8)

We initialize each ei in range (−y, y) where

(
y

2
)log(n) =

x

2
=⇒ y = x

1
log(n) ∗ 2

log(n)−1
log(n) . (9)

4.1.2 MobileNetV1 + BFT

Figure 4:
MobileNetV1+BFT

Block

To add BFT to MobileNeV1, for all Mo-

bileNetV1 blocks, which consist of a

depthwise layer followed by a pointwise

layer, we replace the pointwise convo-

lution with our Butterfly Transform, as

shown in Figure 4. We would like to em-

phasize that this means we replace all

pointwise convolution in MobileNetV1,

with BFT. In Table 1, we show that we

outperform a spectrum of MobileNetV1s

from about 14M to 150M FLOPs with a

spectrum of MobileNetV1s+BFT within

the same FLOP range. Our experi-

ments with MobileNetV1+BFT include all combinations of width-

multiplier 1.00 and 2.00, as well as input resolutions 128, 160, 192,

and 224. We also add a width-multiplier 1.00 with input resolution

96 to cover the low FLOP range (14M). A full table of results can

be found in the Appendix.

In Table 1c we showcase that using BFT outperforms traditional

MobileNets across the entire spectrum, but is especially effective in

the low FLOP range. For example using BFT results in an increase

of 6.75% in top-1 accuracy at 23 MFLOPs. Note that MobileNetV1

+ BFT at 23 MFLOPs has much higher accuracy than MobileNetV1

at 41 MFLOPs, which means it can get higher accuracy with al-

most half of the FLOPs. This was achieved without changing the

architecture at all, other than simply replacing pointwise convo-

lutions, which means there are likely further gains by designing

architectures with BFT in mind.

4.1.3 ShuffleNetV2 + BFT

We modify the ShuffleNet block to add BFT to ShuffleNetv2. In

Table 1a we show results for ShuffleNetV2+BFT, versus the original

ShuffleNetV2. We have interpolated the number of output channels

to build ShuffleNetV2-1.25+BFT, to be comparable in FLOPs with

a ShuffleNetV2-0.5. We have compared these two methods for

different input resolutions (128, 160, 224) which results in FLOPs

ranging from 14M to 41M. ShuffleNetV2-1.25+BFT achieves about

1.6% better accuracy than our implementation of ShuffleNetV2-0.5

which uses pointwise convolutions. It achieves 1% better accuracy

than the reported numbers for ShuffleNetV2 [28] at 41 MFLOPs.

4.1.4 MobileNetV3 + BFT

We follow a procedure which is very similar to that of Mo-

bileNetV1+BFT, and simply replace all pointwise convolutions

with Butterfly Transforms. We trained a MobileNetV3+BFT Small

with a network-width of 0.5 and an input resolution 224, which

achieves 55.21% Top-1 accuracy. This model outperforms Mo-

bileNetV3 Small network-width of 0.35 and input resolution 224

at a similar FLOP range by about 5.4% Top-1, as shown in 1b.

Due to resource constraints, we only trained one variant of Mo-

bileNetV3+BFT.

4.1.5 Comparison with Neural Architecture Search

Including BFT in ShuffleNetV2 allows us to achieve higher

accuracy than state-of-the-art architecture search methods,

MNasNet[43], FBNet [46], and MobileNetV3 [14] on an extremely

low resource setting (∼ 14M FLOPs). These architecture search

methods search a space of predefined building blocks, where the

most efficient block for channel fusion is the pointwise convolu-

tion. In Table 2a, we show that by simply replacing pointwise

convolutions in ShuffleNetv2, we are able to outperform state-of-

the-art architecture search methods in terms of Top-1 accuracy on

ImageNet. We hope that this leads to future work where BFT is in-
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(a) BFT vs. Architecture Search

Model Accuracy

ShuffleNetV2+BFT (14 M) 55.26

MobileNetV3Small-224-0.5+BFT (15 M) 55.21

FBNet-96-0.35-1 (12.9 M) 50.2

FBNet-96-0.35-2 (13.7 M) 51.9

MNasNet (12.7 M) 49.3

MobileNetV3Small-224-0.35 (13 M) 49.8

MobileNetV3Small-128-1.0 (12 M) 51.7

(b) BFT vs. Other Structured Matrix Approaches

Model Accuracy

MobilenetV1+BFT (35 M) 54.3

MobilenetV1 (42 M) 50.6

MobilenetV1+Circulant* (42 M) 35.68

MobilenetV1+low-rank* (37 M) 43.78

MobilenetV1+BPBP (35 M) 49.65

MobilenetV1+Toeplitz* (37 M) 40.09

MobilenetV1+FastFood* (37 M) 39.22

Table 2: These tables compare BFT with other efficient network design approaches. In Table (a), we show that ShuffleNetV2 + BFT outperforms

state-of-the-art neural architecture search methods (MNasNet [43], FBNet[46], MobilenetV3[14]). In Table (b), we show that BFT achieves significantly

higher accuracy than other structured matrix approaches which can be used for channel fusion. The * denotes that this is our implementation.

cluded as one of the building blocks in architecture searches, since

it provides an extremely low FLOP method for channel fusion.

4.1.6 Comparison with Structured Matrices

To further illustrate the benefits of Butterfly Transforms, we com-

pare them with other structured matrix methods which can be used

to reduce the computational complexity of pointwise convolutions.

In Table 2b we show that BFT significantly outperforms all these

other methods at a similar FLOP range. For comparability, we have

extended all the other methods to be used as replacements for point-

wise convolutions, if necessary. We then replaced all pointwise

convolutions in MobileNetV1 for each of the methods and report

Top-1 validation accuracy on ImageNet. Here we summarize these

other methods:

Circulant block: In this block, the matrix that represents the

pointwise convolution is a circulant matrix. In a circulant matrix

rows are cyclically shifted versions of one another [9]. The product

of this circulant matrix by a column can be efficiently computed in

O(n log(n)) using the Fast Fourier Transform (FFT).

Low-rank matrix: In this block, the matrix that represents

the pointwise convolution is the product of two log(n) rank ma-

trices (W = UV T ). Therefore the pointwise convolution can be

performed by two consequent small matrix product and the total

complexity is O(n log n).
Toeplitz Like: Toeplitz like matrices have been introduced in

[40]. They have been proven to work well on kernel approximation.

We have used displacement rank r = 1 in our experiments.

Fastfood: This block has been introduce in [22] and used in

Deep Fried ConvNets[49]. In Deep Fried Nets they replace fully

connected layers with FastFood. By unifying batch, height and

width dimension, we can use a fully connected layer as a pointwise

convolution.

BPBP: This method uses the butterfly network structure for

fast factorization for approximating linear transformation, such as

Discrete Fourier Transform (DFT) and the Hadamard transform[6].

We extend BPBP to work with pointwise convolutions by using

the trick explained in the Fastfood section above, and performed

experiments on ImageNet.

4.2. Ablation Study

Now, we study different elements of our BFT model. As men-

tioned earlier, residual connections and non-linear activations can

be augmented within our BFLayers. Here we show the perfor-

mance of these elements in isolation on CIFAR-10 dataset using

MobileNetv1 as the base network. The only exception is the But-

terfly Base experiment which was performed on ImageNet.

Model Accuracy

No residual 79.2

Every-other-Layer 81.12

First-to-Last 81.75

Table 3: Residual connections

Residual connections:

The graphs that are obtained

by replacing BFTransform

with pointwise convolutions

are very deep. Residual

connections generally help

when training deep networks.

We experimented with three

different ways of adding residual connections (1) First-to-Last,

which connects the input of the first BFLayer to the output

of last BFLayer, (2) Every-other-Layer, which connects every

other BFLayer and (3) No-residual, where there is no residual

connection. We found the First-to-last is the most effective type of

residual connection as shown in Table 3.

With/Without Non-Linearity: As studied by [38] adding a

non-linearity function like ReLU or Sigmoid to a narrow layer

(with few channels) reduces the accuracy because it cuts off half

of the values of an internal layer to zero. In BFT, the effect of an

input channel i on an output channel o, is determined by the mul-

tiplication of all the edges on the path between i and o. Dropping

any value along the path to zero will destroy all the information

transferred between the two nodes. Dropping half of the values of

each internal layer destroys almost all the information in the entire

layer. Because of this, we don’t use any activation in the internal

Butterfly Layers. Figure 5b compares the the learning curves of

BFT models with and without non-linear activation functions.

With/Without Weight-Decay: We found that BFT is very sen-

sitive to the weight decay. This is because in BFT there is only one

path from an input channel i to an output channel o. The effect of

i on o is determined by the multiplication of all the intermediate

edges along the path between i and o. Pushing all weight values

toowards zero, will significantly reduce the effect of the i on o.

Therefore, weight decay is very destructive in BFT. Figure 5a illus-

trates the learning curves with and without using weight decay on

BFT.

Butterfly base: The parameter k in B(n,k) determines the struc-

ture of the Butterfly Transform and has a significant impact on the

accuracy of the model. The internal structure of the BFT will
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(a) Effect of weight-decay (b) Effect of activations (c) Effect of butterfly base

Figure 5: Design choices for BFT: a) In BFT we should not enforce weight decay, because it significantly reduces the effect of input channels on output

channels. b) Similarly, we should not apply the common non-linear activation functions. These functions zero out almost half of the values in the intermediate

BFLayers, which leads to a catastrophic drop in the information flow from input channels to the output channels. c) Butterfly base determines the structure of

BFT. Under 40M FLOP budget base k = 4 works the best.

contain logk(n) layers. Because of this, very small values of k lead

to deeper internal structures, which can be more difficult to train.

Larger values of k are shallower, but have more computation, since

each node in layers inside the BFT has an out-degreee of k. With

large values of k, this extra computation comes at the cost of more

FLOPs.

We tested the values of k = 2, 4, 8, n on MobileNetV1+BFT

with an input resolution of 160x160 which results in ∼ 40M
FLOPs. When k = n, this is equivalent to a standard pointwise

convolution. For a fair comparison, we made sure to hold FLOPs

consistent across all our experiments by varying the number of

channels, and tested all models with the same hyper-parameters on

ImageNet. Our results in Figure 5c show that k = 4 significantly

outperforms all other values of k. Our intuition is that this setting

allows the block to be trained easily, due to its shallowness, and

that more computation than this is better spent elsewhere, such as in

this case increasing the number of channels. It is a likely possibility

that there is a more optimal value for k, which varies throughout

the model, rather than being fixed. We have also only performed

this ablation study on a relatively low FLOP range (40M ), so it

might be the case that larger architectures perform better with a

different value of k. There is lots of room for future exploration in

this design choice.

5. Drawbacks

A weakness of our model is that there is an increase in working

memory when using BFT since we must add substantially more

channels to maintain the same number of FLOPs as the original

network. For example, a MobileNetV1-2.0+BFT has the same

number of FLOPS as a MobileNetV1-0.5, which means it will use

about four times as much working memory. Please note that the

intermediate BFLayers can be computed in-place so they do not

increase the amount of working memory needed. Due to using

wider channels, GPU training time is also increased. In our im-

plementation, at the forward pass, we calculate B(n,k) from the

current weights of the BFLayers, which is a bottleneck in training.

Introducing a GPU implementation of butterfly operations would

greatly reduce training time.

6. Conclusion and Future Work

In this paper, we demonstrated how a family of efficient trans-

formations referred to as the Butterfly Transforms can replace

pointwise convolutions in various neural architectures to reduce

the computation while maintaining accuracy. We explored many

design decisions for this block including residual connections, non-

linearities, weight decay, the power of the BFT , and also introduce

a new weight initialization, which allows us to significantly outper-

form all other structured matrix approaches for efficient channel

fusion that we are aware of. We also provided a set of principles

for fusion network design, and BFT exhibits all these properties.

As a drop-in replacement for pointwise convolutions in effi-

cient Convolutional Neural Networks, we have shown that our

method significantly increases accuracy of models, especially at

the low FLOP range, and can enable new capabilities on resource

constrained edge devices. It is worth noting that these neural archi-

tectures have not at all been optimized for BFT , and we hope that

this work will lead to more research towards networks designed

specifically with the Butterfly Transform in mind, whether through

manual design or architecture search. BFT can also be extended

to other domains, such as language and speech, as well as new

types of architectures, such as Recurrent Neural Networks and

Transformers.

We look forward to future inference implementations of But-

terfly structures which will hopefully validate our hypothesis that

this block can be implemented extremely efficiently, especially on

embedded devices and FPGAs. Finally, one of the major challenges

we faced was the large amount of time and GPU memory necessary

to train BFT , and we believe there is a lot of room for optimizing

training of this block as future work.
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