
Deep White-Balance Editing
Supplemental Material

Mahmoud Afifi1,2 Michael S. Brown1
1Samsung AI Center (SAIC) – Toronto 2York University

{mafifi, mbrown}@eecs.yorku.ca

Input image

Our deep-WB editing results

AW
B

Tu
ng

st
en

 W
B

Sh
ad

e 
W

B

Figure S1: Our deep white-balance editing framework produces compelling results and generalizes well to images outside
our training data (e.g., image above taken from an Internet photo repository). Top: input image captured with a wrong WB
setting. Bottom: our framework’s AWB, Incandescent WB, and Shade WB results. Photo credit: M@tth1eu Flickr–CC
BY-NC 2.0.

We have proposed a deep learning framework for white-
balance (WB) editing of sRGB images captured by a cam-
era. Our method achieves state-of-the-art results compared
with recent methods for post-capture auto WB (AWB) cor-
rection and manipulation [1, 2, 4, 8]. Our method general-
izes well to unseen images that were not included in the
training/validation steps. Fig. S1 shows an example of an
image taken from an Internet photo repository. As shown,
our method produces compelling results with the following
WB settings: (1) AWB (a “correct” WB setting); (2) In-
candescent WB (an indoor WB setting); (3) Shade WB (an
outdoor WB setting).

The rest of our supplemental material is organized as fol-
lows. Sec. S1 provides an ablation study on the choices
made in the paper regarding our DNN and color mapping
function. Specifically, we study the effect of different color

mapping kernels and training loss functions. Sec. S2 pro-
vides additional training details. Then, we provide addi-
tional results of our experiments in Sec. S3.

S1. Ablation study
Kernel function for color mapping In the main paper,
we propose to apply a color mapping in order to generate the
final output image. Our color mapping allows our method
to run on an acceptable CPU inference time to process high-
resolution input images.

Fig. S2 shows an example of two input images rendered
with wrong WB settings. The first image has 5700×2126
pixels, while the second image has 1000×373 pixels. If
our deep neural network (DNN) model processes the input
images with their original resolution on a CPU, the running
time is ∼32 and ∼1.1 seconds on an Intel Xeon E5-1607

1



Input images
5700 2126 pxls

AWB results
1.5 seconds

1000 373pxls

0.9 seconds

Figure S2: Running time of our algorithm for images of
different sizes. Our color mapping procedure, described in
Section 2.5 of the main paper, allows our method to run in
an acceptable time for different-sized input images (∼1–1.5
seconds on average). Photo credit: Wes Browning Flickr-
CC BY-NC-SA 2.0.

V4 (10M Cache, 3.10 GHz) machine with 32 GB RAM for
each image, respectively. Our color mapping procedure al-
lows our DNN framework to process a resized version of
the input image, with the final output image being com-
puted with the input image’s original resolution. Accord-
ingly, this color mapping procedure improves the runtime
performance of our framework when it is deployed on lim-
ited computing resources. For example, our DNN frame-
work using the proposed color mapping procedure takes
only ∼1.5 and ∼0.9 seconds on a CPU with the same con-
figure for the two images in Fig. S2.

In the main paper, we employed an 11-dimensional ker-
nel function to compute our color mapping matrix. Ta-
ble S1 provides results obtained by using different ker-
nel functions. Specifically, we show results of using 9-
dimensional, 11-dimensional, and 34-dimensional polyno-
mial kernels [6, 7]. As shown, the 11-dimensional polyno-
mial kernel achieves the best results on Set 1–Test of the
Rendered WB dataset [2].

L1 vs. L2 training loss functions In the main paper,
we showed results using the L1-norm loss between pre-
dicted patches and the corresponding ground truth training
patches.

We also tested squared L2-norm loss and found that both
loss functions work well for our task. Table S2 shows quan-
titative comparisons between our results by training using
each loss function. The reported results in Table S2 are
obtained by testing each model on the rendered version of
Cube+ dataset [2,3] for both tasks—namely, WB correction
and manipulation. Fig. S3 illustrates a qualitative compari-
son.

S2. Additional Training Details

As discussed in the main paper, our goal is not to recon-
struct unprocessed raw-RGB images. Instead, our goal is
to model the functionality of the F and G functions (Eq. 1
in the main paper) in the sense that the function F maps a
given image rendered with any WB setting to the same start-
ing point that could be used afterwards by G to re-render the
image with different WB settings. Our encoder f maps the
given input image into a common latent representation that
is used afterwards by each decoder g to generate images
with target WB settings.

We trained our approach end-to-end, as discussed in Sec.
2.4 of the main paper. During the training phase, each mini-
batch contains random patches selected from training im-
ages that may contain different WB settings. During train-
ing, each decoder receives the generated latent representa-
tions by our single encoder and generates corresponding
patches with the target WB setting. The loss function is
computed using the result of each decoder and is followed
by gradient backpropagation from all decoders aggregated
back to our single encoder via the skip-layer connections.
Thus, the encoder is trained to map the images into an in-
termediate latent space that is beneficial for generating the
target WB setting by each decoder.

S3. Additional Results

In the main paper, we compared our framework against
a vanilla U-Net architecture [9]. Table S3 reports additional
details to those reported results in the main paper. Specif-
ically, we show the mean and the first, second (median),
and third quartile of mean square error, mean angular error,
and 4E 2000 error [10] obtained by our framework and the
multi-U-Net model. The results were obtained after train-
ing each model for 88,000 iterations on the same training
dataset and settings.

In Table S4 and Table S5, we provide results for the eval-
uation of AWB correction and WB manipulation using the
4E 76 metric.

Fig. S4 shows example images randomly selected from
the Internet with strong color casts. As demonstrated, our
method generalizes well and produces better results com-
pared to other methods for WB correction.

Our method can accept input images with any WB set-
tings, including white-balanced images, and accurately pro-
duces the target WB settings. Fig. S5 shows an exam-
ple of white-balanced input image. Our AWB result is al-
most identical to the input image, as the input image is cor-
rectly white-balanced. Additionally, other output WB set-
tings properly work as shown in Fig. S5-(C). Moreover, our
method can produce consistent results for the same input
image rendered with different WB settings. Fig. S6 shows a
scene image rendered with two different WB settings from



(A) Input image (B) Our AWB trained with 
L1-norm loss 

(B) Our AWB trained with 
L2-norm loss 

Figure S3: (A) Input image. (B) AWB result of our deep-WB model trained using the L1-norm loss. (C) AWB result of our
deep-WB model trained using the squared L2-norm loss. Photo credit: Mark Jenkinson Flickr–CC BY-NC-SA 2.0.

(A) Input image (B) Quasi-U CC (C) KNN-WB (D) Our AWB

Figure S4: (A) Input images. (B) Results of quasi-U CC [4]. (C) Results of KNN-WB [2]. (D) Our deep-WB results. Photo
credits (from top to bottom): Educao Bahia Flickr–CC BY-NC-SA 2.0, Duncan Yoyos Flickr–CC BY-NC 2.0, The Lowry
Flickr–CC BY-NC-SA 2.0, and SCUBATOO Flickr–CC BY 2.0, respectively.

the rendered Cube+ dataset [2, 3]. As shown, our method
can produce consistent results regardless of the input image
WB setting.

Our method fails in some scenarios, as demonstrated in

Fig. S7. In particular, our method is not designed to deal
with multi-illuminant scenes, as is the case in the first and
second rows in Fig. S7. The third row in Fig. S7 shows
a classical failure example in the color constancy literature,



Table S1: This table shows AWB results of different mapping kernels on the Set 1–Test images of the Rendered WB dataset
[2]. The shown images were not used in the training process of our model. We report the mean, first, second (median), and
third quartile (Q1, Q2, and Q3) of mean square error (MSE), mean angular error (MAE), and 4E 2000 [10]. The top results
are indicated with yellow.

MSE MAE 4E 2000Color mapping Mean Q1 Q2 Q3 Mean Q1 Q2 Q3 Mean Q1 Q2 Q3
Kernel-9 [6] 75.2 12.80 44.35 98.27 3.23° 1.99° 2.77° 3.92° 3.89 2.26 3.48 4.94
Kernel-11 [7] 74.76 12.80 43.97 95.98 3.20° 1.97° 2.74° 3.85° 3.90 2.28 3.47 4.91
Kernel-34 [6] 75.78 13.58 45.2 96.27 3.21° 1.98° 2.72° 3.82° 3.90 2.32 3.43 4.91

Table S2: Comparison between results of using L1 and L2 loss functions to train our framework. Shown results were obtained
using the rendered version of Cube+ dataset [2, 3]. We report the mean, first, second (median), and third quartile (Q1, Q2,
and Q3) of mean square error (MSE), mean angular error (MAE), and 4E 2000 [10]. The top results are indicated with
boldface.

MSE MAE 4E 2000Method Mean Q1 Q2 Q3 Mean Q1 Q2 Q3 Mean Q1 Q2 Q3
AWB correction

L1 loss 80.46 15.43 33.88 74.42 3.45° 1.87° 2.82° 4.26° 4.59 2.68 3.81 5.53
L2 loss 83.35 16.01 34.99 75.34 3.24° 1.75° 2.65° 3.96° 4.39 2.54 3.63 5.31

WB manipulation
L1 loss 199.38 32.30 63.34 142.76 5.40° 2.67° 4.04° 6.36° 5.98 3.44 4.78 7.29
L2 loss 196.58 36.76 72.08 166.24 5.50° 2.79° 4.25° 6.79° 6.06 3.46 5.03 7.62

(A) Input image (B) Our AWB (C) Our Incandescent WB 

Figure S5: (A) Input image is correctly white-balanced. (B)
Our AWB result. (D) Our Incandescent WB result. Photo
credit: Tom Magliery Flickr–CC BY-NC-SA 2.0.

(A) Input images (B) Our AWB (C) Our Incandescent 
WB

(D) Our Shade 
WB

Figure S6: Our method produces consistent results from in-
put images rendered with different WB settings. (A) Input
images from the rendered version of the Cube+ dataset [2,3]
with different WB settings. (B)-(D) Our results.

where the input image does not have enough semantic in-
formation to distinguish between original object colors and
the scene illuminant colors. As we can see this failure case

(A) Input images (B) Quasi-U CC (C) KNN-WB (D) Our AWB

Figure S7: Failure examples. (A) Input images. (B) Re-
sults of quasi-U CC [4]. (C) Results of KNN-WB [2]. (D)
Our deep-WB results. Photo credits (from top to bottom):
Martina Flickr–CC BY-NC-SA 2.0, Steve Tannock Flickr–
CC BY-NC-SA 2.0 and Travis Nep Smith Flickr–CC BY-
NC 2.0, respectively.

also is challenging other recent methods [2, 4]. Lastly, Fig.
S8 provides additional qualitative results of our method.

References
[1] Mahmoud Afifi and Michael S Brown. What else can fool

deep learning? Addressing color constancy errors on deep
neural network performance. In ICCV, 2019. 1, 6



Table S3: Comparison between results of our framework and the traditional U-Net architecture [9]. For the AWB task, we
trained a single U-Net model, while we trained two U-Net models for the WB manipulation task. We show results of trained
models using the same training settings for 88,000 iterations. Shown results are reported using Set 2 of the Rendered WB
dataset [2] and the rendered version of the Cube+ dataset [2,3]. We report the mean, first, second (median), and third quartile
(Q1, Q2, and Q3) of mean square error (MSE), mean angular error (MAE), and 4E 2000 [10]. The top results are indicated
with yellow and boldface.

MSE MAE 4E 2000Method Mean Q1 Q2 Q3 Mean Q1 Q2 Q3 Mean Q1 Q2 Q3
AWB on Rendered WB dataset: Set 2 (2,881 images) [2]

U-Net [9] 187.25 58.87 119.67 227.26 4.85° 2.79° 4.17° 6.12° 6.23 4.41 5.62 7.46
Ours 124.47 30.81 75.87 153.18 3.81° 2.11° 3.14° 4.80° 4.99 3.30 4.50 6.07

WB manipulation on Rendered Cube+ dataset with different WB settings (10,242 images) [2, 3]
Multi-U-Net [9] 234.77 66.24 107.11 194.30 5.78° 3.22° 4.54° 7.13° 6.87 4.47 5.85 8.18
Ours 206.81 39.43 78.78 177.78 5.68° 2.90° 4.37° 6.97° 6.23 3.53 5.18 7.86

(A) Input images (B) Our AWB (C) Our Incandescent WB (D) Our Fluorescent WB (E) Our Shade WB

Figure S8: Additional qualitative results of our method. (A) Input images. (B) AWB results. (C) Incandescent WB results.
(D) Fluorescent WB results. (E) Shade WB results. Photo credits (from top to bottom): Santiago Borthwick Flickr–CC
BY-NC-SA 2.0, Roland Tanglao Flickr–CC0 1.0, sg.sam Flickr–CC BY-NC-SA 2.0, and Biggleswade Blue Flickr–CC BY-
NC-SA 2.0.

[2] Mahmoud Afifi, Brian Price, Scott Cohen, and Michael S
Brown. When color constancy goes wrong: Correcting im-
properly white-balanced images. In CVPR, 2019. 1, 2, 3, 4,
5, 6

[3] Nikola Banić and Sven Lončarić. Unsupervised learning for
color constancy. arXiv preprint arXiv:1712.00436, 2017. 2,
3, 4, 5, 6

[4] Simone Bianco and Claudio Cusano. Quasi-unsupervised

color constancy. In CVPR, 2019. 1, 3, 4, 6

[5] Vladimir Bychkovsky, Sylvain Paris, Eric Chan, and Frédo
Durand. Learning photographic global tonal adjustment with
a database of input / output image pairs. In CVPR, 2011. 6

[6] Graham D Finlayson, Michal Mackiewicz, and Anya Hurl-
bert. Color correction using root-polynomial regression.
IEEE Transactions on Image Processing, 24(5):1460–1470,
2015. 2, 4



[7] Guowei Hong, M Ronnier Luo, and Peter A Rhodes. A
study of digital camera colorimetric characterisation based
on polynomial modelling. Color Research & Application,
26(1):76–84, 2001. 2, 4

[8] Yuanming Hu, Baoyuan Wang, and Stephen Lin. FC4: Fully
convolutional color constancy with confidence-weighted
pooling. In CVPR, 2017. 1, 6

[9] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
Net: Convolutional networks for biomedical image segmen-
tation. In International Conference on Medical Image Com-
puting and Computer-Assisted Intervention, 2015. 2, 5

[10] Gaurav Sharma, Wencheng Wu, and Edul N Dalal.
The CIEDE2000 color-difference formula: Implementation
notes, supplementary test data, and mathematical observa-
tions. Color Research & Application, 30(1):21–30, 2005. 2,
4, 5

Table S4: 4E 76 results: complementary results for Table 1
in the main paper. The top results are indicated with yellow
and boldface.

4E 76Method Mean Q1 Q2 Q3
Rendered WB dataset: Set 1–Test [2]

FC4 [8] 8.73 4.25 7.49 11.83
Quasi-U CC [4] 8.08 4.00 6.88 10.77
KNN-WB [2] 4.56 2.51 3.92 5.87
Ours 4.78 2.62 4.17 6.27

Rendered WB dataset: Set 2 [2]
FC4 [8] 15.89 9.49 14.35 20.46
Quasi-U CC [4] 15.70 9.35 14.46 20.47
KNN-WB [2] 7.46 4.19 6.04 9.38
Ours 6.60 3.91 5.61 8.04

Rendered Cube+ dataset [2, 3]
FC4 [8] 13.42 7.4 11.98 17.39
Quasi-U CC [4] 9.78 3.45 6.69 14.18
KNN-WB [2] 7.23 3.74 5.59 8.56
Ours 6.00 3.20 4.76 7.34

Table S5: 4E 76 results: complementary results for Table 2
in the main paper. The top results are indicated with yellow
and boldface.

4E 76Method Mean Q1 Q2 Q3
Rendered Cube+ dataset [2, 3]

KNN-WB emulator [1] 13.20 6.33 11.01 18.19
Ours 9.73 4.58 7.07 12.03

Rendered MIT-Adobe FiveK dataset [2, 5]
KNN-WB emulator [1] 10.48 5.18 8.38 13.64
Ours 7.44 4.23 6.23 9.20


