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In this supplemental material, we provide
1. details of the network architectures, mesh renderer gMR,

evaluating the estimated skeletons, and localizing hands
in images (Sec. 1);

2. a summary of the overall training process (Sec. 2);
3. a description of the algorithms that are compared on

the HO3D dataset (these participated in HANDS 2019
Challenge; Sec. 3);

4. additional hand-only image restoration results (Sec. 4).

1. Implementation details
Network architectures. Tables 1–4 present architectures
of the sub-networks of our domain adaptation network. The
2D feature and pose estimator gFPE receives an input RGB
image of size 256×256 and generates 21 32×32-sized 2D
heatmaps h and 128 32× 32-sized 2D feature maps f : h
and f are sampled at layers 31 and 30 of gFPE, respectively
(Table 1). Supervision on 2D heatmaps are provided at three
different layers (31, 24, and 17) enabling gradual refinement
of the estimated 2D heatmaps.

Our mesh renderer gMR combines four sub-networks:
hand mesh estimator gHME, texture estimator gTex, neural
renderer gNR, and hand joint regressor gReg. gHME and gTex

share a common feature extractor which converts input 2D
maps f and h to a 1,152-dimensional feature vector k by
applying convolution layers to each 32×32-sized 2D map
(see Table 3). Given feature vector k, gHME estimates the
63-dimensional MANO parameter vector p using iterative
regression [9, 1]. The output hand mesh m is then con-
structed by applying the MANO layer gMANO [1, 3, 7] to p.
The texture estimator gTex converts k to a 4,614-dimensional
texture vector encoding RGB colors of 1,538 3D mesh faces.

Details of the component functions of mesh renderer
gMR. Our hand mesh estimator gHME : F × H → M
uses the MANO parameterization p ∈ R63 of Baek et
al. [1]: p consists of 55-dimensional principal component
analysis (PCA) shape parameters (10 for shape and 45 for
articulation) and 8-dimensional camera parameters (global
rotation represented by a 4-dimensional quarternion vector,
one parameter for global scaling, and 3 for 3D translation).

gHME estimates p by first converting 2D maps
{f , h} ⊂ R32×32 to a 1,152-dimensional feature vec-
tor k: We apply the standard convolution layers to each
32 × 32-sized 2D map, eventually reducing the spatial
resolution to 1×1 while increasing the number of feature
channels to 1,152, leading to a 1152×1×1 feature array.

Based on k, adopting the robust parameter optimization
approach of [9, 1], we iteratively estimate p by first construct-
ing an initial estimate p(0) and then refining it by recursively
performing regression on the parameter offset ∆p:

p(t+1)=p(t)+∆p(t), (1)

where the number of total iterations is fixed at 3 similarly
to [9, 1]. The differentiable MANO layer gMANO (as a
component of gHME) then converts the resulting p to a
MANO mesh consisting of 778 vertices and 1,538 faces [1]:
gMANO first restores the mesh shape by combining the
MANO PCA basis vectors using the first 55 components of
p, then it performs linear blend skinning using pose vectors,
and globally rotates, scales, and translates the resulting
meshes with camera parameters of p. All operations of
gMANO are differentiable and as a fixed function, gMANO

does not have any trainable parameters.
As in gHME, the texture estimator gTex : F × H → T

receives k and estimates 3-dimensional color vectors for
each face out of 1,538 in the MANO model generating a
4,614-dimensional feature vector t (see [10] for details).

For the 3D skeleton regressor gReg :F×H→Y , we adopt
the skeleton regressor provided by the authors of the original
MANO model [16], and augment it by manually adding 5
finger tips similarly to [1, 7], as these joints are not provided
in the MANO model. As discussed shortly, supervision
is exercised to gReg based on hand-only images provided
with skeletal annotations. Since gReg is differentiable, the
resulting error can be propagated back to gHME and gTex.
For the neural renderer gNR : F ×H → X , Kato et al.’s
neural render is employed [10]. Both gNR and gReg are held
fixed throughout the training of DAN.

Generation of 2D segmentation masks. The three
synthetic datasets that we use for training (RHD, SH and Ob-
man) are provided with 2D foreground segmentation masks.
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Table 1: Architecture of 2D feature and pose estimator gFPE.

Layer Operation Kernel Dimensionality

Input image - 256×256×3

1 Conv. + ReLU 3×3 256×256×64
2 Conv. + ReLU 3×3 256×256×64
3 Max Pool 4×4 128×128×64
4 Conv. + ReLU 3×3 128×128×128
5 Conv. + ReLU 3×3 128×128×128
6 Max Pool 4×4 64×64×128
7 Conv. + ReLU 3×3 64×64×256
8 Conv. + ReLU 3×3 64×64×256
9 Conv. + ReLU 3×3 64×64×256

10 Conv. + ReLU 3×3 64×64×256
11 Max Pool 4×4 32×32×256
12 Conv. + ReLU 3×3 32×32×512
13 Conv. + ReLU 3×3 32×32×512
14 Conv. + ReLU 3×3 32×32×512
15 Conv. + ReLU 3×3 32×32×512
16 Conv. + ReLU 3×3 32×32×512
17 Conv. 1×1 32×32×21

18 Concat(16, 17) − 32×32×533
19 Conv. + ReLU 7×7 32×32×128
20 Conv. + ReLU 7×7 32×32×128
21 Conv. + ReLU 7×7 32×32×128
22 Conv. + ReLU 7×7 32×32×128
23 Conv. + ReLU 7×7 32×32×128
24 Conv. 1×1 32×32×21

25 Concat(16, 17, 24) − 32×32×554
26 Conv. + ReLU 7×7 32×32×128
27 Conv. + ReLU 7×7 32×32×128
28 Conv. + ReLU 7×7 32×32×128
29 Conv. + ReLU 7×7 32×32×128
30 Conv. + ReLU 7×7 32×32×128
31 Conv. 1×1 32×32×21

For real-world datasets (STB and CORe50), we generate
such segmentation masks based on the accompanying depth
maps or 3D skeleton annotations: STB provides 3D skeleton
annotations from which 3D bounding boxes can be retrieved.
Then, 2D segmentation masks are obtained by first removing
the point clouds that lie outside these boxes and then,
projecting the remaining point clouds onto the image pane.

For CORe50, we generate segmentation masks for 11,053
video frames, out of total ≈ 150,000 frames capturing 11
subjects interacting with 50 objects: First, we sample every 5
frames, as consecutive frames have very similar appearances.
Then, we sample only right-handed subjects (6 out of 11)
and remove video sequences that contain ‘scissors’, ‘remote
controls’ and ‘glasses’ objects as large fractions of frames in
these sequences show only objects (without hands). Finally,
2D segmentation masks are generated by thresholding the
values of each depth map, and manually removing noisy
segmentation masks. Figure 1 shows the segmentation

Table 2: Architecture of GAN generator gGAN.

Layer Operation Kernel Dimensionality

Input feature - 32×32×298

1 Conv.+ReLU 3×3 32×32×298
2 Conv.+ReLU 3×3 32×32×298
3 Residual layer − −
4 Conv.+ReLU 3×3 32×32×298
5 Conv.+ReLU 3×3 32×32×298
6 Residual layer − −
7 Conv.+ReLU 3×3 32×32×298
8 Conv.+ReLU 3×3 32×32×298
9 Residual layer − −

10 Conv.+ReLU 3×3 32×32×298
11 Conv.+ReLU 3×3 32×32×298
12 Residual layer − −
13 ConvTansPose2D + ReLU 4×4 32×32×298
14 ConvTansPose2D + ReLU 4×4 64×64×128
15 ConvTansPose2D + ReLU 4×4 128×128×32
16 ConvTansPose2D + ReLU 7×7 256×256×3

Table 3: Architecture of the feature extraction network that
converts 2D maps h,f to the corresponding feature vector k.

Layer Operation Kernel Dimensionality

Input image - 32×32×149

1 Conv.+ReLU 3×3 32×32×32
2 Conv.+ReLU 3×3 15×15×32
3 Conv.+ReLU 3×3 15×15×64
4 Conv.+ReLU 3×3 7×7×64
5 Conv.+ReLU 3×3 7×7×128
6 Conv.+ReLU 3×3 3×3×128
7 Conv.+ReLU 3×3 1×1×1152

masks generated for hand images sampled from the testing
sets. Here, we also show the corresponding hand-only
images x′′ synthesized by our GAN generator gGAN. These
example shows that even when the original segmentation
masks are noisy, our GAN generator can accurately restore
hand-only parts of the input images.

Hand localization in images. Our domain adaptation
network takes a cropped hand image as input, i.e. it assumes
that all hands in the input images are scale-normalized
and centered. As this might not be the case in real-world
applications, we explicitly crop hands by estimating their
bounding boxes.

At training, such bounding boxes are determined based
on 2D segmentation masks or ground-truth skeletons. When
the dataset at hand provides ground-truth skeletons (e.g.
for hand-only images), we decide the center and size of
each bounding box, respectively as the middle finger’s
metacarpophalangeal (MCP) joint and 1.5 times the size of
the tight bounding box of skeleton joints within the image
pane. When the dataset provides 2D segmentation masks



Table 4: Architectures of GAN discriminators dGAN
1 and

dGAN
2 .

Layer Operation Kernel Dimensionality

Input image - 256×256×3

1 Conv.+ReLU 4×4 128×128×32
2 Conv.+ReLU 4×4 64×64×64
3 Conv.+ReLU 4×4 32×32×128
4 Conv.+ReLU 4×4 16×16×256
5 Conv.+ReLU 4×4 8×8×512
6 Conv.+ReLU 4×4 4×4×1024
7 Conv.+ReLU 4×4 1×1×1024
8 Conv.+ReLU 4×4 1×1×1
9 Sigmoid − −

instead of skeletons, the location and size of each box is
decided as the center and 1.5 times the size of the tight
bounding box of the corresponding mask.

At testing, for all images except for these in HO3D, we
explicitly localize hands using Zimmermann and Brox’s
hand detection algorithm [20]. These initial bounding
box estimates are refined via temporal smoothing over 5
consecutive frames. For HO3D, we use the accompanying
bounding box annotations.

Evaluation of hand pose estimate. The output y of our
domain adaptation network represents the locations of 21
skeleton joints in normalized coordinates: All coordinate
values are bounded in [0,1] and a specific joint (referred
to as root joint) is located at the origin [0,0,0]>. To assess
the accuracy, these estimated coordinate values need to
be mapped to the absolute coordinate system in which the
ground-truth skeleton joints are annotated. For HO3D, we
use ‘palm’ joints provided by the organizers of HANDS
2019 Challenge [4] as the root joint: For each estimated
skeleton, the palm joint is originally set as [0,0,0]>, which
is then translated to the corresponding ground-truth palm
location in absolute coordinates. The scale is restored by
inverse normalizing the bounding boxes that are estimated
during hand localization. Inverse normalizing the estimated
hand skeletons in STB is similar, but here, we use MCP joint
of the middle finger as the root joint.

For DO and ED datasets, the depth values of the root
joints are not provided and therefore, we first restore
these values adopting Iqbal et al.’s approach [8]: We
calculate the root depth assuming that for each skeleton, the
bone-length joining MCP of the index finger and palm is
1. Thereafter, we restore the absolute scales based on the
average bone-lengths calculated from STB’s skeleton data:
We match the lengths of 20 sampled bones in the estimated
hand skeleton to the corresponding average bone lengths
in the STB dataset. See [8, 1] for details.

(a) (b) (c)

Figure 1: Example foreground segmentation masks. (a)
original images x, (b) segmented images x� s generated
based on mask annotations s, (c) hand images x′′ restored
by the GAN generator.

2. Training process
Our 2D feature and pose estimator gFPE is initialized using

the weights of Zimmermann and Brox’s [20] PoseNet. The
other networks are randomly initialized. These initialized
networks are then trained by running 100 epochs of gradient
descent on the loss L with learning rate fixed at 10−5:

L=LHeat+LPos+LImg+Ld, (2)

where

LHeat([g
FPE]H |DHand)=‖gFPE(x)−hGT‖22, (3)

LImg(gFPE,gHME,gTex|D)

=

2∑
i=1

E[log(1−dGAN
i (x′′))]+E[log(1−dGAN

i (x′))]

+‖x′′−x�sHand‖1+‖x′−x�sHand‖1, (4)

LPos(g
FPE,gHME|DHand)=‖[gMR(gFPE(x))]Y −yGT‖22, (5)

Ld(dGAN|D)=−E[log([dGAN
2 (x�sHand)])]

−E[log(1−[dGAN
2 (x�sHOI)])] (6)

−E[log([dGAN
1 (x�sHand)])]−E[log(1−[dGAN

1 (x′′)])].



Algorithm 1 summarizes the overall training process.

3. Baseline approaches and existing datasets
The HO3D dataset was originally used in the Task 3 of the

HANDS 2019 Challenge [4]. As we use the experimental
settings configured for this challenge, our results can be
directly compared with the results of the algorithms that
participated in this challenge (Table 3 in the main paper).
The three best results were achieved by the participants with
IDs potato, Nplwe, and lin84.

The algorithm of potato is based on Iqbal et al.’s
framework [8] which uses a latent depth map generation
module helping lift 2D skeleton heatmap responses to 3D
maps. Note that we evaluate and compare with [8] on ED
and DO. Nplwe’s algorithm bases on LCRNet++ [15]. This
jointly performs bounding box localization, (discrete) pose
classification, and regression of skeletal joints, offering
state-of-the-art performance in 3D human pose estimation.
The algorithm of lin84 is based on the encoder-decoder archi-
tecture of Yang et al. [18]. By exploiting the data generation
capability of the MANO 3D hand model [16], this algorithm
generates intermediate RGB images and depth maps, and
uses them as a prior helping refine their encoder latent space.

Existing datasets for RGB-based 3D hand pose esti-
mation. Collecting quality 3D pose annotations of real
RGB images under the HOI scenarios is challenging due
to e.g. occlusions. A complete and automatic pipeline for
annotating 3D joint locations for severely occluded hands
does not exist. It either requires much manual effort to
continuously check and refine the labels [21] or the use
of magnetic sensors [5]/data gloves [2] that corrupts RGB
images. Alternatively, they resort to synthetic data.

In Table 5, we present several datasets popularly used
for training RGB-based 3D hand pose estimator. The Table
shows that most large-scale datasets in the hand pose esti-
mation community (e.g. RHD [20], SynthHands (SH) [13],
GANerated [12] and Obman [7]) are synthetic. Real datasets
have either limited annotations such as discrete grasp
types (e.g. GUN-71 [14]), only 5 finger tips (e.g. DO [17],
EGO [13]) or limited number of frames (e.g. around 10K
frames for HOI in HO3D [6]). FPHA [5] dataset is real and
fair-sized; however their RGB frames are corrupted since the
magnetic sensors used are visible. FreiHand [21] is of the
latest benchmark having a moderate-scale (35k). However,
less than half of it contains HOI images. Considering
diverse objects, backgrounds and large hand pose space
combined, far more samples are needed. In [7], authors
reported the accuracy of hand pose estimator trained and
tested using either hand-only or HOI data. When the hand
pose estimator is trained by HOI, it does not perform well on
hand-only testing images in comparison to the model trained
by hand-only, though increasing the accuracy on HOI testing
images. Note that our algorithm uses hand-only images in
the RHD, SH and STB datasets, unlabeled real-world HOI

images from the CORe50 dataset, and synthetic HOI image
pairs from the Obman dataset.

4. Additional examples
Figures 2–4 shows example hand-only restoration and

skeleton estimation results: By employing the MANO model
and GAN generators, and iteratively enforcing consistency
of the final mesh reconstruction over 2D maps, our algorithm
often faithfully recovers the hand-only counterpart of the
input HOI image. Furthermore, even for challenging cases
where hand restorations are inaccurate, by fully exploiting
them in combination with features extracted via our 2D
feature and pose estimator, our method can estimate accurate
or reasonably accurate final skeletons (Fig. 5).
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Algorithm 1: Training process
Input:

–Training data D=[DR
Hand,D

S
Hand,D

R
HOI,D

S
paired],

DR
HOI3D.
–MANO model: PCA shape basis; mean pose vector;
–Hyper-parameters: number T1, T2 of epochs, size N ′ of mini-batch;

Output: (Weights of)
–Feature and pose estimator gFPE;
–GAN generator gGAN;
–GAN discriminator dGAN;
–Neural mesh renderer gMR =[gHME,gTex] (gNR, gMANO have no trainable parameters and the weights of gReg are fixed).

Initialization:
–Pre-train gFPE based on [20];
–Randomize (parameters) of gGAN, dGAN and gMR =[gHME,gTex].

for t=1,...,T1+T2 do
for n=1,...,N/N ′ do

if t>T1 then
For each data point x in the mini-batch Dn, generate MR output x′ and GAN generator output x′′;
Calculate gradient∇LD with respect to (the weights of) dGAN (Eq. 6) on Dn, and update dGAN;
Calculate

gradient∇LImg with respect to (the weights of) gGAN and gMR (Eq. 4) on Dn, and update gGAN and gMR;
end
if Dn∈DR

Hand,D
S
Hand,D

R
HOI3D then

For each x∈Dn, generate 2D heatmaps h, 3D skeleton y;
Calculate LHeat (See Eq. 3) and gradient∇LHeat with respect to (the weights of) gFPE and update gFPE;
Calculate LPos (See Eq. 5) and gradients∇LPos with respect to gMR on Dn, and update gMR;
if t>T1 then

Generate 2D heatmaps h, 3D skeleton y for x′′;
Calculate LHeat (See Eq. 3) and gradient∇LHeat with respect to (the weights of) gFPE and update gFPE;
Calculate gradient∇LPos with respect to (the weights of) gMR, gFPE on Dn, and update gMR, gFPE;

end
end

end
end

Table 5: A comparison of existing RGB hand pose estimation benchmarks: Dexter+Object (DO) [17], EgoDexter (ED) [13],
First person hand action (FPHA) [5], SynthHands (SH) [13], Ganerated Hands (GANerated) [12], Obman [7], and HO3D [6].

Scenario #Object RGB Depth Hand mask Real vs. Synthetic Frames Pose annotation Viewpoint

CORe50 [11] HOI 50 3 3 7 Real 150k 7 ego+3rd

GUN-71 [14] HOI 28 3 3 7 Real 12k discrete grasp type ego

STB [19] H 7 3 3 7 Real 15k 21 joints 3rd

RHD [20] H 7 3 3 3 Synthetic 41k+2.7k 21 joints 3rd

DO [17] HOI 1 3 3 7 Real 3k 5 tips 3rd

ED [13] HOI 6 3 3 7 Real 1.5k 5 tips ego

FPHA [5] HOI 26 7 3 7 Real 100k 21 joints ego

SH [13] H+HOI 7 3 3 3 Synthetic 63k 21 joints ego

GANerated [12] HOI 7 3 7 7 Synthetic 330k 21 joints ego

Obman [7] H+HOI 8 3 3 3 Synthetic 140k 21 joints ego+3rd

HO3D [6] HOI 6 3 3 3 Real 10k 21 joints 3rd

FreiHand [21] H+HOI >26 3 7 3 Real 35k (less than half for HOI) 21 joints 3rd+ego



Figure 2: Example results of hand-only image restoration and skeleton estimation on HO3D. (row 1) input images x, (row
2) images x′ generated by our initial mesh renderer gMR, (row 3) images x′′ generated by the GAN generator gGAN, (row
4-5) final images z synthesized by the mesh renderer gMR and the corresponding skeleton estimates y.

Figure 3: Example results of hand-only image restoration and skeleton estimation on ED. (row 1) input images x, (row 2)
images x′ generated by our initial mesh renderer gMR, (row 3) images x′′ generated by the GAN generator gGAN, (row 4-5)
final images z synthesized by the mesh renderer gMR and the corresponding skeleton estimates y.



Figure 4: Example results of hand-only image restoration and skeleton estimation on DO. (row 1) input images x, (row 2)
images x′ generated by our initial mesh renderer gMR, (row 3) images x′′ generated by the GAN generator gGAN, (row 4-5)
final images z synthesized by the mesh renderer gMR and the corresponding skeleton estimates y.

(a) (b) (c) (d) (e)

Figure 5: Examples of failure cases (HO3D): (a) input images x, (b) images x′ generated by our initial mesh renderer gMR,
(c) images x′′ generated by the GAN generator gGAN, (d-e) final images z synthesized by the mesh renderer gMR and the
corresponding skeleton estimates y. Being distracted by the ‘yellow bottle’, our domain adaptation network generated
imprecise initial hand-only reconstructions (x′′). Note that even with these initial reconstructions, our model generated
accurate or reasonably accurate final mesh and skeleton estimates.
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