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A. Loss Landscape

In [11], they analyze the stability and smoothness of the
optimization landscape by measuring Lipschitzness and the
“effective” β-smoothness of loss. We use these measure-
ments to analyze learning dynamics for both MAML and
our proposed method during training on 5-way 5-shot mini-
ImageNet classification tasks. In Figure A, we start with
investigating fast-adaptation (or inner-loop) optimization. At
each inner-loop update step, we measure variations in loss
(Figure A(a)), the l2 difference in gradients (Figure A(b)),
and the maximum difference in gradient over the distance
(Figure A(c)), as we move to different points along the com-
puted gradient for that gradient descent. We take an average
of these values over the number of inner-loop updates and
plot them against training iterations. With a similar approach,
we also analyze the optimization stability of fast adaptation
to validation tasks at every epoch (Figure B). The measure-
ments were averaged over (the number of validation tasks ×
the number of inner-loop update steps).

At the initial stages of training, L2F appears to struggle
more, while optimization of MAML seems more stable. This
may seem contradictory at first but this actually validates our
argument about conflicts between tasks even further. At the
beginning, the MAML initialization is not trained enough
and thus does not have sufficient prior knowledge of task dis-
tribution yet. As training proceeds, the initialization encodes
more information about task distribution and encounters
conflicts between tasks more frequently.

As for L2F, the attenuator network gφ initially does not
have enough knowledge about the task distribution and thus
generates meaningless attenuation γ, deteriorating the ini-
tialization. But, the attenuator network increasingly encodes
more information about the task distribution, generating
more appropriate attenuation γ that corresponds to tasks
well. The generated γ accordingly allows for a learner to
forget the irrelevant part of prior knowledge to help fast
adaptation, as illustrated by increasing stability and smooth-
ness of landscape in Figure A. The similar observation can
be made from B, illustrating the generalizability and the

robustness of the proposed method to unseen tasks.
We also investigate the optimization landscape of learn-

ing the initialization θ itself for both MAML and L2F in
Figure C. The figure demonstrates that the more stable and
smoother landscape is realized by L2F. Because the task-
dependent layer-wise attenuation allows for forgetting the
irrelevant or conflicting part of prior knowledge present in
the initialization θ, it lifts a burden of trying to resolve con-
flicts between tasks from θ, allowing for more stable training
of the initialization itself.

B. Extended Experiments on Classification
To further validate that our method consistently provides

benefits regardless of scenarios, we compare our method
against the baseline on additional datasets that have been
recently introduced: FC100 (Fewshot-CIFAR100) [7] and
CIFAR-FS (CIFAR100 few-shots) [1]. Both aim for cre-
ating more challenging scenarios by using low resolution
images (32×32, compared to 84× 84 in miniImageNet [8]
and tieredImageNet [9]) from CIFAR100 [4]. These two
datasets differ in how they create the train/val/test splits of
CIFAR100. While CIFAR-FS follows the procedure that

FC100
1-shot 5-shot 10-shot

MAML* 35.98± 0.48% 51.40± 0.50% 56.13± 0.50%
MAML+L2F 39.46± 0.49% 53.12± 0.50% 59.72± 0.49%

* Our reproduction.

Table A: Test accuracy on FC100 5-way classification

CIFAR-FS
1-shot 5-shot

MAML* 53.91± 0.50% 70.16± 0.46%
MAML+L2F 57.28± 0.49% 73.94± 0.44%

* Our reproduction.

Table B: Test accuracy on CIFAR-FS 5-way classification
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(b) gradient predictiveness
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(c) “effective” β smoothness
Figure A: Analysis of the optimization landscape of the fast adaptation to tasks from the meta-training set. In each subfloat,
averaged values are shown for each training iteration.
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Figure B: Analysis of the optimization landscape of the fast adaptation to tasks from the meta-validation set. In each subfloat,
averaged values are shown for each training epoch.

was used for miniImageNet, FC100 aligns more with the
goal of tieredImageNet in that they try to minimize the
amount overlap between splits by splitting based on super-
classes. Table A presents results for FC100 and Table B for
CIFAR-FS. We also perform additional experiments on Meta-
Dataset [14], which is a combination of diverse datasets and
hence poses more challenging scenarios, where conflicts can
occur among tasks more frequently. Table C shows that our
proposed method resolves conflicts better than MAML even
under challenging scenarios.

C. Regression

C.1. Additional Qualitative results

In Figure D and E, we show a random sample of qual-
itative results from the k-shot sinusoid regression, where
k ∈ [5, 10]. The target function (or true function) is a sine
curve y(x) = Asin(wx + b) with the amplitude A, fre-
quency ω, phase b, and the input range [−5.0, 5.0]. The
sampling range of amplitude, frequency, and phase defines
a task distribution. In Figure D, we follow the general set-
tings in [2, 5], where amplitude A, frequency ω, and phase
b are sampled from the uniform distribution on intervals
[0.1, 5.0], [0.8, 1.2], and [0, π], respectively. MAML+L2F
demonstrates more accurate regression for both 5 and 10-shot
cases, compared to the baseline, MAML. To further stress the
generalization of the MAML+L2F initialization, we exten-

sively increase the degree of conflicts between new tasks and
the prior knowledge. To that end, we modify the setting such
that amplitude, frequency, and phase are sampled from the
non-overlapped ranges for training and evaluation. In train-
ing, amplitudeA, frequency ω, and phase b are sampled from
the uniform distribution on intervals [0.1, 3.0], [0.8, 1.0], and
[0, π/2], respectively. In evaluation, amplitude A, frequency
ω, and phase b are sampled from the uniform distribution on
intervals [3.0, 5.0], [1.0, 1.2], and [π/2, π], respectively. In
Figure E, our method(MAML+L2F) exhibits better fitting
and thus claims the better generalization than MAML for
both 5 and 10-shot regression.

C.2. Additional Quantitative results

In Table D, we compare the proposed method against
other advanced MAML-based methods, which are gener-
alizable across domains, specifically MuMoMAML and
MAML++. As with results on classification, our method
consistently outperforms in regression task.

D. Reinforcement Learning

D.1. Additional Qualitative results

The qualitative results for the 2D navigation experiments
are shown in Figure F. In training, the position of start-
ing point is fixed at [0, 0] and the position of destination
is randomly sampled from space [−0.5× 0.5,−0.5× 0.5],
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Figure C: Analysis of the optimization landscape of the initialization learning dynamics.

Model ILSVRC Omniglot Aircraft Birds Textures Quick Draw Fungi VGG Flower Traffic signs MSCOCO

MAML 19.35± 0.84 66.14± 1.47 40.20± 1.05 40.61± 1.79 38.94± 1.69 42.46± 1.54 13.80± 1.19 61.07± 1.50 23.38± 1.12 13.29± 1.11
Ours 25.93± 1.10 72.26± 1.63 53.31± 1.48 42.62± 1.30 49.57± 1.03 50.28± 1.67 20.20± 1.08 64.23± 1.31 31.71± 1.45 19.75± 0.93

Table C: Test accuracy (%) of MAML (our reproduction) vs MAML+L2F on Meta-Dataset

which is the same experiment procedure from [2]. Veloc-
ity is clipped to be in the range [0.2, 0.2]. In evaluation,
we performed experiments with four different task distribu-
tions. In Figure F(a), the task distribution for evaluation is
the same as for training. On the other hand, as in regres-
sion experiment E, we perform additional 3 experiments
(Figure F(b), (c), (d) that evaluate models under extreme
conditions, where the task distribution for evaluation is cho-
sen to be different from the task distribution for training. In
Figure F(b), the staring point is no longer fixed but rather
sampled from space [−0.5 × 0.5,−0.5 × 0.5]. In Figure
F(c), the position of starting point is fixed at [0, 0]. However,
the position of the ending point is sampled from a larger
space [−2.0 × 2.0,−2.0 × 2.0]. In Figure F(d), both the
starting and destination positions are sampled from space
[−2.0 × 2.0,−2.0 × 2.0]. Overall, our proposed method
demonstrates more accurate and robust navigation, com-
pared to the baseline MAML.

E. Implementation Details
E.1. classification

E.1.1 Experiment Setup

We use the standard settings [2] for N -way k-shot classifica-
tion in both miniImageNet[8] and tieredImageNet[9]. When
calculating gradients for fast adaptation to each task, the
number of examples D used is either N . The fast adapta-
tion is done via 5 gradient steps with the fixed step size,
α = 0.01 for all models, except LEO and LEO+L2F during
both training and evaluation. Gradients for meta-updating
the networks fθ and gφ are calculated with 15 number of
examples D′ at each iteration. The MAML and its vari-
ants were trained for 50000 iterations in miniImageNet and
125000 in tieredImageNet to account for the larger number

of examples as in [6]. The meta batch size of tasks is set to
be 2 for 5-shot and 4 for 1-shot, with the exception that the
batch size is 1 for ResNet12 in miniImageNet and tieredIm-
ageNet. This is due to the limited memory and the heavy
computation load from the combination of second-order gra-
dient computation, large image size, and a larger network.
As for experiments with LEO, we follow the exact setup
from LEO [10]. We only add attenuation process before
adaptation in latent space and fine-tuning in parameter space
for LEO+L2F.
E.1.2 Network Architecture for fθ

4 conv As with most algorithms [15, 8, 12, 13] that use 4-
layer CNN as a backbone, we use 4 layers each of which
contains 64-filter 3 × 3 convolution filters, a batch normal-
ization [3], a Leaky ReLU nonlinearity, and a 2×2 max
pooling. Lastly, the classification linear layer and softmax
are placed at the end of the network.
ResNet12 As for the ResNet12 architecture, the network
consists of 4 residual blocks. each residual block consists
of three 3× 3 convolution layers. The first two convolution
layers are followed by a batch normalization and a Leaky
ReLU nonlinearity. The last convolution layer is followed
by a batch normalization and a skip connection that contains
a 1× 1 convolution layer and a batch normalization. After
a skip connection, a Leaky ReLU nonlinearity and a max
2× 2 are placed at the end of each residual block.

The number of convolution filters for 4 residual blocks
is set to be 64, 128, 256, 512 for 4 residual blocks in the
increasing order of depth.

E.1.3 Network Architecture for gφ

gφ is a 3-layer MLP, with each layer of l hidden units, where
l is the number of layers of the main network, fθ. Activation



Models 1 step 2 steps 5 steps

5-shot

MAML 1.2247 1.0268 0.8995
MuMoMAML 1.1010 0.9291 0.8615
MAML++ 1.2028 0.9268 0.7547
Ours 1.0537 0.8426 0.7096

(a) Regression

Models 1 step 2 steps 3 steps

2D Navi

MAML -32.626 -25.746 -20.734
MuMoMAML -25.785 -23.705 -19.747
MAML++ -36.281 -27.264 -18.620
Ours -24.230 -19.598 -16.517

(b) RL

Table D: Additional Quantitative Experiments
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(a) 5 shot regression
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(b) 10 shot regression

Figure D: Qualitative results for the K∈ [5, 10]-shot sinusoid regression(y(x) = Asin(x+ b)). Parameters are sampled from
the same distribution for training and evaluation.

functions are ReLU in between and a sigmoid at the end.
The input is layer-wise mean of gradients. As for LEO, the
case is a bit different because they perform one adaptation
in latent codes and one on decoded classifier weights. Thus,
we introduce two 3-layer MLPs, one for each. Again, for
each MLP, the numbers of hidden units for each layer is n,
where n is the dimension of latent codes or the number of
classifier weights.

E.2. Regression and RL

The details of the few shot regression and reinforcement
learning experiments are listed in Table E.

E.3. System

All experiments were performed on a single NVIDIA
GeForce GTX 1080Ti.
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(a) Non-overlapped task distributions on 5-shot
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(b) Non-overlapped task distributions on 10-shot

Figure E: Qualitative results for the K∈ [5, 10]-shot sinusoid regression(y(x) = Asin(x+ b)). Parameters are sampled from
non-overlapped ranges for training and evaluation.

Hyperparameters

policy network 2 hidden layers of size 40 with ReLU
training iterations 50000 epochs
inner update α 0.01
meta update optimizer Adam
meta batch size 4
k shot [5,10,20]
loss function MSE loss

eval randomly sample 100 sine curves,
sample 100 examples (repeated 100 times)

(a) Regression

Hyperparameters

policy network 2 hidden layers of size 100 with ReLU
inner update vanilla policy gradient
inner update α 0.01
meta-optimizer TRPO
training iterations 500 epochs, choose best model
MuJoCo horizon 200
MuJoCo batch size 40

MUJoCo evals update 4 gradient updates,
each with 40 samples for a task

2D navigation horizon 100
2D navigation batch size 20

2D navigation evals update 4 gradient updates,
each with 20 samples for a task

(b) RL

Table E: Implementation Details for Regression and RL
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(a) Start = [0.0], End ∈ [−0.5, 0.5] × [−0.5, 0.5]
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(b) Start, End ∈ [−0.5, 0.5] × [−0.5, 0.5]
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(c) Start = [0.0], End ∈ [−2.0, 2.0] × [−2.0, 2.0]
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(d) Start, End ∈ [−2.0, 2.0] × [−2.0, 2.0]

Figure F: Qualitative results for the 2D Navigation task with MAML vs MAML+L2F (Ours) comparison. Only (a) experiment,
tasks are sampled from the same distribution for training and evalution, and (b), (c), and (d) experiments, tasks are sampled
from the non-overlapped ranges for training and evaluation
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Figure G: Degree of conflict within a task: The degree of
conflict within each task is averaged across tasks per each
epoch. The degree of conflict within each task is observed
to be lower than the degree of conflict between tasks. This is
expected as the examples within a task are more similar than
examples from different tasks. Thus, the gradients are more
aligned within tasks.

F. Conflict Within a Task
In this section, we also measure the degree of conflict

that exist within task (conflict between examples in the same
task), as illustrated in Figure G. As expected, the degree of
conflict within task is observed to be lower than the degree of
conflict between tasks. This is because the examples within
a task are more similar to each other than examples from
different tasks. This leads to gradients being more aligned
within a task, while gradients between tasks have a larger
amount of disagreement.
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