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A1: Surface Normal Annotation UI
The surface normal annotation UI is shown in Fig. I.

Figure I. Surface normal annotation UI. The surface normal is vi-
sualized as a blue arrow originating from a green grid, rendered in
perspective projection according to the known focal length.

A2: Additional Examples from OASIS
Additional human annotations are shown in Fig. II.

A3: Comparison with Other Datasets
Tab. I compares OASIS and other datasets.

A4: Planar versus Curved Regions
Tab. II measures the annotation quality separately for

planar regions and curved regions.

A5: Additional Depth Experiments
Sec 6.1 of the main paper trains and evaluates variants

of the Hourglass [3] and ResNetD [15] that predict a met-
ric depth map and a focal length on OASIS. Here we also
provide results of Hourglass and ResNetD predicting only
metric depth but not focal length. Tab. III shows the results.

A6: Additional Qualitative Outputs

Qualitative predictions presented in both Fig. III and Fig.
5 of the main paper are produced as follows: Depth predic-
tions are produced by a ResNetD [15] network trained on
OASIS + ImageNet [7]. Surface normal predictions are pro-
duced by an Hourglass [5] network trained on OASIS alone.
Occlusion boundary and fold predictions are produced by
an Hourglass [3] network trained on OASIS alone. Pla-
nar instance segmentations are produced by a PlanarRecon-
struction [17] network trained on Scannet [6] + OASIS.

A7: Evaluating Fold and Occlusion Boundary
Detection

This section provides details on evaluating fold and oc-
clusion boundary detection. As discussed in Sec 6.3 of the
main paper, our metric is based on the ones used in evaluat-
ing edge detection [1, 16].

The input to our evaluation pipeline consists of (1) the
probability of each pixel being on edge (fold or occlusion)
pe, and (2) a label of each pixel being occlusion or fold.
By thresholding on pe, we first obtain an edge map Eτ at
threshold τ . We denote the occlusion pixels as O and the
fold pixels as F . We find the intersection O ∩ Eτ and use
the same protocol as [1] to compare it against the ground-
truth occlusion O∗ and obtain true positive count TFo, false
positive count FPo and false negative count FNo. We follow
the same protocol to compare F ∩ Eτ against ground-truth
fold F ∗ and obtain TFf , FPf and FNf .

We then calculate the joint counts TF, FP and FN:
TP=TFo+TFf , FP=FPo+FPf and FN=FNo+FNf .

We iterate through different τ to obtain the joint counts
TF, FP and FN at each threshold to obtain the final ODS/OIS
F-score and AP.
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Dataset In the Wild Acquisition Depth Normals Occlusion & Fold Relative Normals Planar Inst Seg # Images
OASIS X Human annotation Metric (up to scale) Dense X X X 140K

NYU Depth V2 [13] - Kinect Metric Dense - - - 407K
KITTI [8] - LiDAR Metric - - - - 93K
DIW [3] X Human annotation Relative - - - - 496K

SNOW [5] X Human annotation - Sparse - - - 60K
MegaDepth [11] X SfM Metric (up to scale) - - - - 130K

ReDWeb [15] X Stereo Metric (up to scale) - - - - 3.6K
3D Movie [10] X Stereo Metric (up to scale) - - - - 75K

OpenSurfaces [2] - Human annotation - Dense - - - 25K
CMU Occlusion [14] X Human annotation - - Occlusion Only - - 538

Table I. Comparison between OASIS and other 3D datasets. Metric (up to scale) denotes that the depth is metrically accurate up to scale.

NYU Depth [13]
Human-Human Human-Sensor

Planar Regions 0.079m 0.091m
Curved Regions 0.077m 0.102m

Table II. Depth difference between different humans (Human-
Human) and between humans and depth sensors (Human-Sensor)
in planar and curved regions. The results are averaged over all hu-
man pairs. The mean of depth in tested samples is 2.471 m, the
standard deviation is 0.754 m.

Prediction Method Training Data LSIV RMSE WKDR
FCRN [9] ImageNet [12] + NYU [13] 0.67 39.94%

Hourglass [3, 11] MegaDepth [11] 0.67 38.37%
Hourglass [3, 11] OASIS 0.65 42.80%

Depth ResNetD [15, 4] ImageNet [12] + YouTube3D [4] + 0.66 34.03%ReDWeb [15] + DIW [3]
ResNetD [15, 4] ImageNet [12] + OASIS 0.63 40.08%

Depth ResNetD [15] ImageNet [12] + OASIS 0.37 32.04%
& ResNetD [15] OASIS 0.47 38.79%

Focal Hourglass [3] OASIS 0.47 39.64%

Table III. Depth estimation performance of different networks on
OASIS (lower is better). For networks that do not produce a focal
length, we use the best focal length leading to the smallest error.
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Figure III. Additional qualitative outputs from four tasks: (1) depth estimation, (2) normal estimation, (3) fold and occlusion boundary
detection, and (4) planar instance segmentation.


