
Supplementary of Skeleton-Based Action Recognition with Shift Graph
Convolutional Network

Ke Cheng1,2, Yifan Zhang1,2∗, Xiangyu He1,2, Weihan Chen1,2, Jian Cheng1,2,3, Hanqing Lu1,2

1NLPR & AIRIA, Institute of Automation, Chinese Academy of Sciences
2School of Artificial Intelligence, University of Chinese Academy of Sciences

3CAS Center for Excellence in Brain Science and Intelligence Technology
{chengke2017, chenweihan2018}@ia.ac.cn, {yfzhang, xiangyu.he, jcheng, luhq}@nlpr.ia.ac.cn

1. Details for computing FLOPs1.
In the main paper, we show the computational complex-

ity of ST-GCN [8], 2s-AS-GCN [1], 2s-Adaptive-GCN [5],
2s-AGC-LSTM [6], 4s-Directed-GNN [4], and our pro-
posed Shift-GCN. Because the computational complexity
was not explicitly discussed in some papers; we estimate
them based on their description. Note that the number
of body joints and sample frames are different in differ-
ent dataset; therefore, we discuss the computational com-
plexity on NTU RGB+D [3], NTU-120 RGB+D [2], and
Northwestern-UCLA [7] in Section.1.1, Section.1.2, and
Section.1.3 respectively.

1.1. NTU RGB+D dataset.

1.1.1 The FLOPs of ST-GCN [8].

ST-GCN [8] is composed of one input block and 9 residual
blocks, as shown in Table 1. Each block contains a regular
spatial convolution and a regular temporal convolution.

As introduced in our main paper, the regular spatial con-
volution in a block is a fusion of three graph convolutions,
which operate on three different partitions respectively. Ev-
ery graph convolution contains two matrix multiplications,
whose computational complexity is NCC ′ + N2C ′ (For
the blocks that C = C ′, this formula can be simplified to
NC2 +N2C). Every frame requires the same computation
process. Therefore, the FLOPs of regular spatial convolu-
tion in a block is:

SFLOPs = (3× (NCC ′ +N2C ′))× T (1)

The regular temporal convolution in a block is a 1D con-
volution on the temporal dimension whose kernel size is 9.
Every body joint requires the same temporal convolution.
Therefore, the FLOPs of a temporal convolution is:

∗Corresponding author.
1FLOPs: FLoating-number OPerations

TFLOPs = (9× TCC ′)×N (2)

Besides, a fully-connected layer is used to get final
scores for 60 classes, whose FLOPs is:

FCFLOPs = C ′ × classes = 256× 60 (3)

ST-GCN [8] is composed of 10 spatial convolutions, 10
temporal convolutions, and one fully-connected layer. We
compute the FLOPs of every part and get the total FLOPs:
8.1G.

Note that in the NTU RGB+D dataset, there are one or
two people in each sample. For samples with only one per-
son, the second person is padded with zeros. The skele-
ton graphs of these two people are computed respectively.
Thus, the total FLOPs for one action sample is 2 × 8.1G
= 16.2G, including 4.0G on spatial graph convolution and
12.2G on temporal graph convolution.

Stage ST-GCN
Block0 C = 3, C ′ = 64, T = 300, N = 25
Block1 C = 64, C ′ = 64, T = 300, N = 25
Block2 C = 64, C ′ = 64, T = 300, N = 25
Block3 C = 64, C ′ = 64, T = 300, N = 25
Block4 C = 64, C ′ = 128, T = 150, N = 25
Block5 C = 128, C ′ = 128, T = 150, N = 25
Block6 C = 128, C ′ = 128, T = 150, N = 25
Block7 C = 128, C ′ = 256, T = 75, N = 25
Block8 C = 256, C ′ = 256, T = 75, N = 25
Block9 C = 256, C ′ = 256, T = 75, N = 25

global average pooling, FC, softmax
Table 1. The structure of ST-GCN, where C denotes the number
of input channels, C′ denotes the number of output channels. T
denotes the number of temporal frames, N denotes the number of
body joints on NTU RGB+D dataset.



1.1.2 The FLOPs of Shift-GCN (Ours).

As introduced in our main paper, we use ST-GCN [8] as the
backbone structure. We replace the regular spatial convolu-
tion with our spatial shift graph convolution and replace the
regular temporal convolution with our temporal shift graph
convolution.

We propose two kinds of spatial shift graph convolutions.
For a local spatial shift graph convolution layer, the FLOPs
is NCC ′T (i.e., the FLOPs of a point-wise convolution).
For a non-local spatial shift graph convolution layer, the
FLOPs is NCC ′T + NCT , where NCT is the FLOPs
of the element-wise mask. Compared with the FLOPs of
regular spatial graph convolution in Eq.1, both local and
non-local spatial shift graph convolution are more than 3×
lighter.

We propose two kinds of temporal shift graph convolu-
tions. For a naive temporal shift graph convolution layer,
the FLOPs is NC ′C ′T (i.e., the FLOPs of a point-wise con-
volution). For an adaptive temporal shift graph convolution
layer, the FLOPs is NC ′C ′T + 4NC ′T , where 4NC ′T is
the FLOPs of two adaptive temporal shift operations. Com-
pared with the FLOPs of regular temporal graph convolu-
tion in Eq.2, both naive and adaptive temporal shift graph
convolution are about 9× lighter.

For samples with only one person, we adopt the same
padding strategy as ST-GCN [8] to pad the second person
with zeros. The FLOPs of Shift-GCN is 2.5G, including
1.1G on spatial shift graph convolution and 1.4G on tempo-
ral shift graph convolution. For 2-stream-Shift-GCN and 4-
stream-Shift-GCN, the FLOPs are 5.0G and 10.0G respec-
tively.

1.1.3 The FLOPs of 2s-AS-GCN [1].

2s-AS-GCN [1] contains 2 streams: an actional stream and
a structural stream. Both streams use ST-GCN [8] as the
backbone, where the temporal convolution kernel size is
modified to 7. They introduce an extra decoder network, but
the decoder network is not used in inference. Thus we only
compute the FLOPs of its backbone: 2 × 13.5G = 27.0G,
where “13.5G” is the FLOPs of ST-GCN whose temporal
kernel size is 7.

1.1.4 The FLOPs of 2s-Adaptive-GCN [5].

2s-Adaptive-GCN [5] contains 2 streams: a joint stream and
a bone stream. Both streams use ST-GCN [8] as the back-
bone and introduce non-local adaptive spatial graph convo-
lution to enhance the expressiveness. As described in their
paper, the FLOPs of non-local adaptive spatial graph con-
volution is 3 × (NCCe + NCC ′ + N2Ce + N2C) × T ,
where Ce is the dimension of embedding space. With the

non-local adaptive module, the total FLOPs of 2s-Adaptive-
GCN is 2 × 17.9G = 35.8G.

1.1.5 The FLOPs of 2s-AGC-LSTM [6].

The AGC-LSTM model contains three parts: the first linear
embedding layer, a standard LSTM layer, and three AGC-
LSTM layers.

The first linear layer encodes the 3-dim coordinates of
joints into a 256-dim vector as position features. Its FLOPs
is 3× 256×N × T , where N = 25 and T = 100.

After the first linear layer, they use a feature augmenta-
tion operation to get 512-dim vectors for every body joint
in every frame. These vectors are sent to an LSTM layer
whose hidden size is 512. The FLOPs of this LSTM layer
is (4× 2C2)×N ×T , where C = 512, N = 25, T = 100,
“4×” means that there are 4 matrix multiplications in one
LSTM.

After that, they introduce three AGC-LSTM layers. The
FLOPs of each AGC-LSTM layer contains three sub-parts:
1) the FLOPs of LSTM, which is (4×2C2)×N×T ; 2) the
FLOPs of graph convolution, which is 3×(N2C+NC2)×
T × 2; 3) the FLOPs of their proposed attention module,
which is at least (4 × C2) × T . Before each AGC-LSTM
layer, a temporal pooling layer is inserted to downsample
the temporal dimension. The stride of the pooling layer is
not explicitly mentioned in their paper, so we contact the
author and confirm that the stride is 2. Therefore, in these
three AGC-LSTM layers, T is 50, 25, 13 respectively.

Besides, a fully-connnected layer is used to get final
scores for 60 classes, whose FLOPs is C × classes =
512× 60.

After computing the above FLOPs, we need to multiply
the result by 4, because there can be 2 people in one NTU
RGB+D sample and 2s-AGC-LSTM uses 2 streams fusion
strategy. The total FLOPs of 2s-AGC-LSTM is 54.4G.

1.1.6 The FLOPs of 4s-Directed-GNN [4].

4s-Directed-GNN [4] fuses 4 streams: “joint stream”, “bone
stream”, “joint motion stream”, and “bone motion stream”.
All 4 streams use ST-GCN [8] as backbone. They di-
vide them into two groups. One group contains the “joint
stream” and “bone stream”. We call it “spatial group”. An-
other group contains the “joint motion stream” and “bone
motion stream”. We call it “motion group”.

In both groups, they introduce two directed graph mod-
ules into every ST-GCN block to exchange information.
Each directed graph module contains a fully-connected
layer, whose input channel is 3C and output channel is
C ′. Therefore, the FLOPs of one directed graph module
is 3CC ′NT , where N is the number of body joints and T
is the number of frames.



In their paper, they mention two ST-GCN baselines. One
is called 2s-ST-GCN which is the standard two-stream ST-
GCN; the other is called 1s-ST-GCN whose number of
channels is twice the original number. But they do not
explicitly mention which baseline to build their Directed-
GNN. We contact the author and confirm that: for spatial
convolution, they use two-stream ST-GCN and introduce
directed graph modules to exchange information; however,
for temporal convolution, they concatenate the two-stream
features on the channel dimension and double the number
of channels. Notice that the FLOPs is quadratic in term of
the number of channels.

With these analyses, we can compute the FLOPs of
Directed-GNN [4]. The FLOPs of both “spatial group”
and “motion group” are 63.4G, so the total FLOPs of 4s-
Directed-GNN is 2 × 63.4G = 126.8G.

1.2. NTU-120 RGB+D dataset.

For NTU-120 RGB+D dataset [2], the number of body
joints and sample frames are the same with NTU RGB+D
dataset. When computing FLOPs, the only difference is the
last fully-connected layer, because the number of classes is
120 instead of 60. In this case, the FLOPs of Shift-GCN
is still 2.5G, because the FLOPs of the last fully-connected
layer is tiny.

1.3. Northwestern-UCLA dataset.

For Northwestern-UCLA dataset [7], the number of
body joints is 20. Both 2s-AGC-LSTM [6] and our Shift-
GCN samples 50 frames as input. In this case, the FLOPs
of 2s-AGC-LSTM is 10.9G; the FLOPs of Shift-GCN is
0.17G. For 2-stream-Shift-GCN and 4-stream-Shift-GCN,
the FLOPs are 0.33G and 0.66G respectively.

2. Detailed training settings.
We use SGD with Nesterov momentum (0.9) to train the

model for 140 epochs. Initial learning rate is set to 0.1
and is divided by 10 at epoch 60, 80 and 100. For NTU
RGB+D and NTU-120 RGB+D, the batch size is 64. The
max number of frames in each sample is 300. For samples
with less than 300 frames, we pad it to 300 frames by re-
peating data [8]. For Northwestern-UCLA, the batch size is
16. The number of frames is set to 50 [6]. The weight de-
cay is 1e-4 except the spatial shift graph convolution, whose
weight decay is set to 1e-3. This setting is helpful for reg-
ularizing spatial shift graph convolution which models di-
verse relations and tend to be overfitted. For spatiotempo-
ral Shift-GCN, we find the variance of feature is larger, but
the variance of the learnable mask is small. So we set the
weight decay for learnable mask to 0. The same hyperpa-
rameter is used across different layers and different datasets.

For spatial shift graph operation, the learnable mask has
NC degree of freedom, which is helpful for modeling di-

verse shift connections between different nodes. Inspired
by this mechanism, we employ a batch norm layer with NC
weights and biases with the spatial shift graph convolution.
For adaptive temporal shift operation, the shift parameters
are randomly initialized with uniform distribution between
-1 and 1. To ensure stable learning, we clip the gradient of
shift parameters with a bound 0.01. The same hyperparam-
eter is used across different layers and different datasets.

3. Runtime speed.

As shown in the following table, Shift-GCN is not only
theoretically efficient but also has notable practical speedup
2. The graph shift layers only occupy 8% runtime of Shift-
GCN, including non-local spatial shift and adaptive tempo-
ral shift. All these timing results are measured on 4 TITAN
Xp with batch size = 64. As shown in Table 2, Shift-GCN
has notable practical speedup than regular GCN methods,
even in multi-stream cases 3.

Model Comparison Theoretical Practical
1s Shift-GCN v.s. 2s AS-GCN 10.8× 5.6×
1s Shift-GCN v.s. 2s Adaptive-GCN 14.3× 8.2×
2s Shift-GCN v.s. 2s Adaptive-GCN 7.2× 4.0×

Table 2. Theoretical speedup and practical speedup of Shift-GCN.

4. Sensitivity analysis for shift orders.

As mentioned in our main paper, the main idea of the
shift graph operation is shifting the features of the neigh-
bor nodes to the current convolution node. Thus, there is a
question: if a node has more than one neighbor nodes, we
should shift them in what order?

For the non-local shift graph operation and the tempo-
ral shift graph operation, the network structure is irrelevant
to the shift order. For example, shifting the first channel
or shifting the second channel is equivalent to a point-wise
convolution.

However, for local shift graph operation, different shift
order affects the utilization ratio of feature, because differ-
ent nodes have different numbers of neighbors. In our ex-
periment, if a node has more than one neighbor node, the
shift order is decided by the ordinal number for simplic-
ity, which is pre-defined by skeleton datasets. To evaluate
the sensitivity for different shift order, we randomly shuffle
the ordinal numbers of body joints and evaluate the perfor-
mance of local spatial shift GCN for 5 times. As shown
in Table 3, the performance does not change obviously in
different shift orders.

2We compare with 2s-AS-GCN and 2s-Adaptive-GCN because their
codes are publicly available.

3The runtime of multi-stream cases are measured by serial computing.



Shift order Top 1
Following ordinal number 93.9

Random Shuffle

93.9
94.0
94.0
93.9
94.0

Table 3. Sensitivity analysis for different shift orders. The accu-
racy (%) is evaluated on NTU RGB+D X-view task.

References
[1] Maosen Li, Siheng Chen, Xu Chen, Ya Zhang, Yanfeng Wang,

and Qi Tian. Actional-structural graph convolutional networks
for skeleton-based action recognition. In The IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
June 2019.

[2] Jun Liu, Amir Shahroudy, Mauricio Perez, Gang Wang, Ling-
Yu Duan, and Alex C. Kot. NTU RGB+D 120: A large-
scale benchmark for 3d human activity understanding. CoRR,
abs/1905.04757, 2019.

[3] Amir Shahroudy, Jun Liu, Tian-Tsong Ng, and Gang Wang.
Ntu rgb+ d: A large scale dataset for 3d human activity analy-
sis. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 1010–1019, 2016.

[4] Lei Shi, Yifan Zhang, Jian Cheng, and Hanqing Lu. Skeleton-
based action recognition with directed graph neural networks.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 7912–7921, 2019.

[5] Lei Shi, Yifan Zhang, Jian Cheng, and Hanqing Lu. Two-
stream adaptive graph convolutional networks for skeleton-
based action recognition. In The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), June 2019.

[6] Chenyang Si, Wentao Chen, Wei Wang, Liang Wang, and Tie-
niu Tan. An attention enhanced graph convolutional lstm net-
work for skeleton-based action recognition. In The IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR),
June 2019.

[7] Jiang Wang, Xiaohan Nie, Yin Xia, Ying Wu, and Song-Chun
Zhu. Cross-view action modeling, learning and recognition.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2649–2656, 2014.

[8] Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial temporal
graph convolutional networks for skeleton-based action recog-
nition. In Thirty-Second AAAI Conference on Artificial Intel-
ligence, 2018.


