
Bodies at Rest: 3D Human Pose and Shape Estimation
from a Pressure Image using Synthetic Data

Supplementary Material

Henry M. Clever1, Zackory Erickson1, Ariel Kapusta1, Greg Turk1, C. Karen Liu2, and Charles C. Kemp1

1Georgia Institute of Technology, Atlanta, GA, USA, 2Stanford University, Stanford, CA, USA
{henryclever, zackory, akapusta}@gatech.edu, turk@cc.gatech.edu, karenliu@cs.stanford.edu, charlie.kemp@bme.gatech.edu

Appendix A: PressurePose Data Generation
A.1. Initial Pose Sampling

We use rejection sampling to generate initial pose dataset
partitions. Our criteria are as follows.

Uniform Cartesian space distribution - Fig. 10 (a).
We use rejection sampling to uniformly sample poses with
respect to the Cartesian space, by discretizing the space
and ensuring that a given limb is equally represented in
each unit. We define a Cartesian space Y as a cuboid
for checking for presence of the most distal limb. First,
we constrain Y in the (x, y) directions to how far the
distal joint (e.g. right foot, sr.foot) can extend from the
promixal joint (e.g. right hip, sr.hip) in a limb. For
the legs, we assume that the foot cannot move above the
hip. For the right leg, these constraints can be summa-
rized as: sr.foot,x ∈ [sr.hip,x − lleg, sr.hip,x + lleg] and
sr.foot,y ∈ [sr.hip,y, sr.hip,y + lleg]. We also constrain the z
direction to ensure that the distal joint is initially positioned
at a height close to where the proximal joint is: For lay-
ing poses, the distal joints (feet and hands) are more likely
to end up close to the surface of the bed than very high in
the air, for example. This constraint promotes simulation
stability and decreases the time it takes for physics simula-
tion #1 (Fig. 2) to reach an equilibrium state. We constrain
sr.foot,z ∈ [sr.hip,z − 10cm, sr.hip,z + 10cm].

Next, we break up Y into a set of smaller cuboids as
shown in Fig. 10-top middle. For each limb we uniformly
sample a cuboid from {Y1, ...} and then use rejection sam-
pling on the limb joint angles — in the case of Fig. 10 (a),
the right leg — until sr.foot ∈ Y4.

Generate common posture partitions - Fig. 10 (b).
Some common postures, such as resting with the hands be-
hind the head, are unlikely to be generated when the joint
angles are sampled from a uniform distribution. For exam-
ple, there is a < 1% probability of generating a pose with
the hands-behind-the-head when sampling joint angles uni-
formly, so a network trained with such little hands-behind-

Figure 10. Rejection sampling criteria. (a) Evenly distributing
right leg poses across Cartesian space by sampling from four non-
overlapping Cartesian cuboids, {Y1,Y2,Y3,Y4, } ∈ Y . Reject
pose angles if sr.ankle 6∈ Y4 (b) For sampling right arm in the
hands-behind-head partition, we reject the right arm pose angles if
sr.hand 6∈ YRH . (c) Pose feasibility checking via collision detec-
tion.

the-head data has difficulty learning such a pose. We mit-
igate this issue by checking for presence of the most dis-
tal joint in a cuboid representing where it would be lo-
cated in such as pose. If the joint is within the cuboid, e.g.
sr.hand ∈ YRH , the joint passes the criteria and we add the
limb pose to the set of checked initial poses.

Prevent self-collision - Fig. 10 (c). We reject poses that
result in self collision by capsulizing the mesh and using
the DART collision detector. We check the hands, forearms,

1

feet, and lower leg capsules for collision with any other cap-
sules except their adjacent capsules (e.g. forearm and upper
arm should overlap).

A.2. Dynamic Simulation Details

Weighting particles in FleX. We directly calculate par-
ticle mass for the particlized human in physics simulation
#2, as well as for the particlized calibration objects depicted
in Fig. 5 (b). Since FleX is a position-based dynamics sim-
ulator and the mass is defined by units of inverse mass 1/m
on an arbitrary scale, we begin by defining the inverse mass
scale for particles in the particlized human.

For this, we assume that the volume each particle in the
human takes up, as well as the density of particles, is the
same for that of water. Because volume and density are
equal, we also can set inverse mass equal, so 1/mH = 1,
thus 1/mH2O = 1.

We calculate the inverse mass for particles in calibration
objects by a density ratio to that of water, given a known
weight of the object wk and the object volume Vo:

1

mo,k
=

1

mH2O

ρH2O

ρo
=

ρH2O

mH2O

Vo
wk/g

(10)

where ρH2O is the density of water and g is gravity. In
contrast to the humans and objects rested on the bed, the
the soft mattress and synthetic pressure mat particle inverse
mass are determined from an optimization described in Ap-
pendix A.4.

Weighting the capsulized human chain. We compute
a per-capsule weight for the articulated capsulized chain in
DartFleX based on the weight distribution for an average
person and capsule volume ratios. First, we describe how
we assign capsule mass for the average person. We use av-
erage body mass and mass distribution values from Tozeren
[13], and calculate capsule volumes from body shape. We
assume the average human of gender g ∈ {M,F} has a
mass of m̄g , mass percentage distribution for body part R
of X̄R,g ∈ X̄g , and SMPL body shape parameters β̄g = 0.
We define the mass of each capsule c in an average person
to be:

m̄c = m̄gX̄R,g
V̄c,g
V̄R,g

(11)

where V̄c,g is the volume of capsule c for a mean body shape
β̄g , and V̄R,g is the sum of volumes for all capsules in body
part R. Now, we describe how this capsule mass can be
converted into masses for people of other shapes. To find
the mass of some capsule c for a body of particular shape β,
we use a capsule volume ratio between the particular person
and an average person:

mc = m̄c
Vc
V̄c,g

(12)

where Vc is the volume of some arbitrary capsule. Comput-
ing capsule volume analytically is simple given radius and
length, but this is complicated by capsule overlap, which is
often substantial in the SMPLIFY capsulized model [2] we
use. Instead, we use discretization to compute capsule vol-
ume and correct for overlap. First, we use the SMPLIFY
regressor to calculate capsule radius and length from body
shape β. Besides shape, overlap is dependent on the par-
ticular pose of the capsulized model. We assume that pose
dependent differences in overlap are very small, and set the
pose constant at Θ = 0. We then compute the global trans-
form for each capsule using this shape and pose. From
capsule radii, lengths, and global transforms, we place all
capsules in 3D space and voxelize them with a resolution
of 2mm. This produces a set of 3D masks, which are
tagged to their corresponding capsules. Voxels belonging
to a unique capsule are allocated directly, while voxels be-
longing to multiple capsules are allocated fractionally based
on the number of capsules sharing the voxel. We compute
capsule mass inertia matrices analytically from capsule ra-
dius and length.

Capsulized body joint stiffness. For an average per-
son, we set the following joint stiffnesses for the shoul-
ders, elbows, hands, hips, knees and feet to low stiffness:
k̄θ,shd = 4 Nm, k̄θ,elb = 2 Nm, k̄θ,hnd = 4 Nm, k̄θ,hip = 6
Nm, k̄θ,knee = 3 Nm and k̄θ,feet = 6 Nm. We set torso
and head stiffness very stiff k̄θ,trs, k̄θ,hd = 200 Nm. For a
person of particular body shape, we weight joint stiffnesses
kθ by the body mass ratio, where kθ = (m/m̄)k̄θ. We set
joint damping bθ = 15kθ. The direction and magnitude of
stiffness force on each joint is dependent on joint equilib-
rium position, i.e. the joint angle where force is 0. We set
the equilibrium position of the joints to be the home pose,
where the arms are at the sides and the legs are straight.
In the SMPLIFY model, home pose consists of equilibrium
joint positions Θeq set to 0, except the shoulders, which are
bent downward at 90 degrees. Rather than set Θeq to initial
joint angles ΘC , we do this to guide the pose away from
extreme angles at a modest force.

Because we set the joint stiffness low, our dataset does
not capture non-resting postures, such when a person is get-
ting in/out of bed (recall Table 1). However, we have been
able to generate resting sitting poses by bending the mat-
tress and pressure mat into a sitting configuration and then
resting a person on it, like the sitting postures in [4].

Settling criteria - Physics simulation #1. For physics
simulation #1, the goal is to slowly allow the body to fall
on the bed and settle into a resting pose. We start the cap-
sulized body at a height based on the lowest point on the
body. For many randomly sampled poses, the lowest joint is
initially much lower than the center of mass, which causes
the center of mass to build significant momentum by the
time it reaches the bed. We found that this caused bounc-

2

Figure 11. Size of synthetic pressure mat. Physics simulation #1
uses forces from particles on the entire covered bed. The pres-
sure mat calculated in physics simulation #2 uses a smaller subset
representing the size of the real pressure mat.

ing and instability, and was qualitatively different from the
motion one might take to assume a resting pose in bed. We
alleviate this issue by zeroing the velocity of the capsulized
model every 4 iterations in the simulation (∼ 0.04s) until
a capsule that better represents the center of mass contacts
the surface of the bed. For this, we use the capsule approx-
imating the buttocks.

Finding a resting pose in static equilibrium is ham-
pered by the stability of DartFleX: DART uses a more tra-
ditional physics solver and FleX uses position-based dy-
namics, which are challenging to connect in a stable loop.
Rather than run the simulation until static equilibrium, we
use a cutoff threshold that takes velocity and acceleration
of all capsules into account. We define a resting body as
that when the maximum velocity of all capsules has reached
vmax < 0.05m/s and maximum acceleration has reached
amax < 0.5m/s2. In the event the model does not settle
within 2000 iterations or the pressure array becomes unsta-
ble (defined by separation of particles in the pressure mat,
e.g. limb poking into mat), the simulation is terminated and
the particular ΘC is rejected. Across the whole dataset, we
found roughly a 10% rejection rate for both of these criteria.

Settling criteria - Physics simulation #2. We use the
same approach as simulation #1 to determine the height to
drop particlized humans. We found it to always be sta-
ble for our purpose, and it took roughly 150 iterations to
reach the same resting velocity and acceleration previously
stated. Because it only uses FleX and the limbs do not
move kinematically, it is an order of magnitude faster to
run and provides greater flexibility to determine settling cri-
teria. We ran simulation #2 for a minimum of 200 itera-
tions and terminated it once the velocity and acceleration
thresholds of the particlized human, vptcl < 0.05m/s and
aptcl < 0.5m/s2, were reached. In almost all cases, 200
iterations was sufficient.

Computation time. For both physics simulations, we
ran 10 parallel simulation environments on a computer with
32 cores and a NVIDIA 1070-Ti GPU. This allowed us to
generate roughly 35,000 labeled synthetic pressure images
per day.

Figure 12. Pressure mat pyramidal structure showing FleX param-
eters that we optimized using CMA-ES.

A.3. Pressure Mat Structure Details

Limited pressure sensing area. The sensing portion of
the real pressure mat does not cover the entire mattress. We
measured a non-sensing border of 6 cm on the sides of the
bed and 9 cm at the top and bottom. We built the simu-
lator in the same way: the synthetic pressure mat covers
the entire bed (68 x 33), but only an inner subset (64 x 27)
representing the sensing area of the pressure image array is
recorded, as depicted in Fig. 11.

FleX spring constraints. FleX particles in the synthetic
pressure mat are bound together by stiffnesses shown in Fig.
12.

Pressure mat adhesion. For the real pressure mat, vel-
cro and tape are used to prevent sliding across the bed. For
the synthetic pressure mat, particles are fixed in horizontal
directions across the bed.

A.4. FleX Calibration

Although FleX is able to simulate soft bodies, FleX is not
optimized to model real-world physics or to calculate real-
istic pressures. To optimize our FleX simulation to match
the real-world mattress and pressure mat, we place a set of
static objects on the real mattress, and record the resulting
pressure images from the pressure mat. We then build a
similar environment in FleX, and we optimize FleX param-
eters such that the simulated and real-world measurements
closely align.

We jointly optimize 16 deformable bed and pressure
sensing array parameters S using CMA-ES [5]. These in-
clude the 13 FleX parameters in Fig. 12, including 4 soft
mattress parameters, 7 pressure array stiffnesses, spacing
between the pressure mat layers and particle inverse mass,

3

as well as quadratic taxel force constants C1, C2, and
C3. To optimize, we first place a set of real rigid objects
{o1, . . .oJ} each with weights {w1, . . . wM} on the real
bed. Fig. 5 (a) depicts {o1, . . .oJ}, where J = 4 and we
use capsular objects with 5 weights for each: 1.3, 2.3, 4.5,
9.1 and 14 kg on the shorter capsules (L=20 cm), and 1.3,
4.5, 9.1, 14 and 18 kg on the longer capsules (L=40 cm). We
then collect real pressure mat images {P1,1, . . .PJ,M} and
measure the distance that the mattress compresses normal
to the bed surface in centimeters, {q1,1, . . .qJ,M}.

Next, we build a matching set of simulated capsules
{o1, . . . oJ} in FleX with the same weights, where one of
these objects is shown Fig. 5 (b). At each iteration of
the optimization, we drop J simulated capsules of each M
weights onto the FleX mattress, re-compute the synthetic
pressure images, and compare them to the real ones. The
loss function for our optimization takes as input simulated
and real pressure images and is computed as:

arg min
S

J∑
o=1

M∑
k=1

(
LFk,o + LCk,o + LQk,o

)
(13)

with terms for force error in the pressure mat, LFk,o, contact
locations on the pressure mat, LCk,o, and amount of mat-
tress compression by the object, LQk,o. For some real object
o with weight k resting on a soft bed at depth q from the
unweighted height of the soft bed, a pressure image P mea-
sures forces on individual taxels {u1 . . .uT }, where con-
tact is a binary vector {c1 . . . cT } indicating which taxels
are measuring non-zero forces. The upper limit T is a spa-
tial index indicating the number of taxels on the pressure
image. We note that the value of T for these calibration im-
ages is roughly equal to a fraction of the pressure mat size,
(64 × 27)/5, because we drop multiple objects simultane-
ously to speed up the optimization. Similar to the real mat,
the values for the simulated environment are computed as
ui, ci, and q. The loss terms are computed as:

LFk,o =
1

2

∑T
i=1 |ui − ui|∑T
i=1 (ui + ui)

+
1

2

|
∑T
i=1 (ui − ui)|∑T
i=1 (ui + ui)

(14)

LCk,o =
1

2

∑T
i=1 |ci − ci|∑T
i=1 (ci + ci)

+
1

2

|
∑T
i=1 (ci − ci)|∑T
i=1 (ci + ci)

(15)

LQk,o =
|q − q|
|q|+ |q|

(16)

The first term for both LFk,o and LCk,o account for errors in
pressure measurements between individual taxels between
the real and simulated pressure mats. The second term ac-
counts for errors in the total measured pressure under an
object. All terms are normalized. Since the distances q and

q are signed, we take the absolute value in the denominator
of LQk,o for normalization.

CMA-ES implementation. To optimize the FleX envi-
ronment with CMA-ES [5], we used a population size of 50,
max iterations of 3000, max function evaluations of 1e+ 8,
mean learning rate of 0.25, function tolerance of 1e − 3,
function history tolerance of 1e− 12, x-change tolerance of
5e− 4, max standard deviation of 4.0, and stagnation toler-
ance of 100. We used a machine with 8 cores and a Nvidia
1070-Ti GPU, and the optimization took 6 days.

Various combinations of parameters result in simulation
instability. We perform a constrained optimization by plac-
ing a high cost on the evaluation function, f eval, when a
parameter is suspected of causing instability.
• Negative FleX parameters can cause instability. If any

negative FleX parameter is proposed, a high f eval
is assigned.
• Large differences between Kσ,KB ,Kτ (see Fig. 12)

causes knotting in the simulated array. If any stretch,
bending, or shear stiffness value is outside of the range
0.5 < K < 2.5, we add 10x the deviation from this
range to the f eval.
• An unusually long simulation time step indicates in-

stability in the parameters. In this event, the particular
rollout is terminated and a high f eval is assigned.
• If an object takes too long to settle, the rollout is ter-

minated and a high f eval is assigned.

A.5. DartFleX Calibration

The purpose of this calibration is to calibrate the force
that should be applied to a DART capsule from particle pen-
etration on the FleX pressure mat. This enables the two
simulators to be connected through a mass-spring-damper
model, which we described in Section 3.2 in the main pa-
per.

We begin with an optimized FleX environment (Ap-
pendix A.4) and calibrate the spring coefficient k, from the
mass-spring-damper model. We calibrate k so that the dy-
namic collision geometries displace the FleX mattress in the
same way that real objects would. We take the same set
of real objects from the FleX calibration of various shapes
{o1, . . .oD} and weights {w1, . . . wD}, where D = 20,
place them on the real mattress, and measure the mattress
displacement {q1, . . .qD}. Then, we recreate the objects
as collision geometries {õ1, . . . õD} in FleX, displace the
FleX mattress by {q̃1, . . . q̃D, } = {q1, . . .qD}, and record
the sum of particle penetration distances of underlying tax-
els
{∑P

i=1 xi,1, . . .
∑P
i=1 xi,D

}
. We compute k as the av-

erage k across D objects:

k =

(
w1∑P
i=1 xi,1

∣∣∣∣∣
q̃1

+ . . .+
wD∑P
i=1 xi,D

∣∣∣∣∣
q̃D

)
/D (17)

4

where the vertical bar indicates the amount that object õ
of weight w is displaced by distance q̃, which results in
particle penetration distances

∑P
i=1 xi. The length of a

timestep is uncontrollable in FleX. Thus, the timestep in
DART is calculated by dropping objects in both environ-
ments from a matching height and equating the time to con-
tact the ground, where both simulators have g = 9.81m/s2.
This resulted in a DART timestep of 0.0103s.

A.6. Real Dataset Collection Details

Participants donned an Optitrak motion capture suit with
high contrast to the bed sheets to facilitate analysis of the
pose and body shape. We provided S, M, L and XL sizes,
and instructed participants to use a form fitting size.

We used the IAI Kinect2 package to calibrate the
Kinect [14]. Our released dataset consists of RGB im-
ages and depth/point cloud data from the Kinect that are
synchronized and spatially co-registered to the pressure im-
ages. We manually synchronized the modalities; only static
poses are captured so the time discrepancy is insignificant.
We spatially co-registered the Kinect to the pressure mat by
putting 1” tungsten cubes on the corners of the pressure mat,
which could be seen with all modalities. We captured a co-
registration snapshot for each participant, which was taken
after they were finished. We created an interface to click on
the tungsten block locations on the images and used CMA-
ES to find the 6DOF camera pose and co-register it with the
mat.

A.7. Dataset Partitions

Table 4 presents a detailed description of the data par-
titions. We split the data for gender. We also split for re-
quiring initial limb positions to be over the surface of the
bed, meaning that the Cartesian cuboids used for initial pose
sampling (recall Fig. 10) are clipped in the x and y direc-
tions at the edge of the mattress.

A.8. Dataset Limitations

Domain gap. The real pressure mat has a larger force
range. Additionally, as a result of putting a blanket on the
bed during the real study, the overall pressure magnitude
was reduced∼ 3x, which was not reflected in synthetic data
calibration. To correct for this, we normalize as described
in Appendix B.1.

Synthetic body joint limits. We observed that roughly
2% of the synthetic poses appear uncomfortable or infeasi-
ble for a real person (Fig 13). This work could be improved
by using pose-conditioned joint angle limits such as [1] in-
stead of constant limits. Fig. 13-right shows an impossible
pose where the thighs are in collision. We were not able
to check collisions between the thighs using the capsulized
model because the thigh capsules are often in collision for
valid poses.

pose partition, limb distribution

ge
nd

er

lim
bs

on
be

d

tr
ai

n
ct

.
sy

nt
h

te
st

ct
.

sy
nt

h

te
st

ct
.

re
al

general* F N 26000 3000 120
even leg space: {Y1, ...Y4} ∈ YL M N 26000 3000 119
even arm space: {Y1, ...Y8} ∈ YA F Y 26000 3000 120

M Y 26000 3000 120
supine general** F N 13000 1500 40

even leg space: {Y1, ...Y4} ∈ YL M N 13000 1500 39
even arm space: {Y1, ...Y8} ∈ YA F Y 13000 1500 40

M Y 13000 1500 40
supine hands behind head** F Y 2000 500 40
even leg space, arms Fig. 10(b) M Y 2000 500 40

prone hands up† F Y 4000 500 40
even leg space, hnds above shldrs M Y 4000 500 40

supine crossed legs** F N 2000 - -
even leg space, even arm space, M N 2000 - -

feet must cross according to F Y 2000 500 40
x direction in Fig. 10(a) M Y 2000 500 38
supine straight limbs** F N 2000 - -

even leg space, even arm space, M N 2000 - -
elbows and knees straight F Y 2000 500 40

M Y 2000 500 36

TOTAL - - 184000 22000 952

Table 4. Partitions for synthetic data and prescribed poses. For
evening the leg space, see Fig. 10(a). For evening the arm space,
an additional four subspaces {Y5, . . .Y8} are chosen because the
most distal joint (hand) is allowed to extend all the way below and
above the limb root joint (shoulder), measured in the y direction.
* θr,3 ∼ U [−π3 ,

π
3], θr,1 ∼ U [−π, π]

** θr,3 ∼ U [−π3 ,
π
3], θr,1 = 0

† θr,3 ∼ U [−π3 ,
π
3], θr,1 = π

Figure 13. Uncomfortable or infeasible poses outside of typical
human movement range (left, middle). Impossible pose where the
thighs are in collision (right).

Appendix B: PressureNet
B.1. PressureNet Architecture Details

CNN - Convolutional Neural Network. Our CNN ar-
chitecture, depicted in Fig. 14, is similar to that of Clever et
al. [4], and uses the same kernel sizes, layers, and dropout.
The first layer is a convolutional layer with a 7x7 kernel,
and uses a stride of 2 and zero padding of size 3 on the
sides of input images. The max pooling layer has a stride of
2 and padding of 0. All other convolutional layers are 3x3
with a stride of 1 and padding of 0. We use 192 channels
in the first two convolutional layers and in the max pooling
layer, and 384 channels in the last two convolutional layers.
This CNN also differs from [4] in that we use tanh activa-

5

Figure 14. PressureNet: Convolutional Neural Network (CNN) with five convolutional layers, one max pooling layer, and one fully
connected layer. Input images are normalized by per-image division by the sum of taxels. * indicates that the number of channels shown
(3) represents Mod1 in Fig. 6 (a), whereas Mod2 in Fig. 6 (a) uses 5 input channels.

Figure 15. PressureNet: Differentiable SMPL human mesh reconstruction from Kanazawa et al. [6]. Our additions to [6] include input
constraints (shown in the light grey box) and the root joint rotation and translation.

tion functions instead of ReLU. Through informal testing
on smaller data sizes (e.g. 46K images), we observed that
networks with tanh activations had less overfitting. We nor-
malize the input and output of the network. To normalize
the input channels, divide by the sum of taxels for each in-
put image, ΣI . To normalize the output, we multiply it by
the range of shape, pose, and posture parameters from the
synthetic training dataset. We compute the range from the
lower and upper limits,ΨL and ΨU , of all parameters in the
training dataset. For joint angle limits (i.e. pose), we use
values from [12, 3, 11]. For body shape, we use sampling
bounds [−3, 3] from [10]. For global rotation, we use our
sampling bounds for roll and yaw of [−π, π] and [−π6 ,

π
6],

and for global translation, we use the size of the bed.

SMPL - Human Mesh Reconstruction. Following the
CNN, we use the human model generative part of the HMR

network [6], which inputs estimated shape, pose, and pos-
ture Ψ̂, and outputs a differentiable human mesh recon-
struction V̂ , as well as a set of N = 24 Cartesian joint
positions Ŝ. This generative SMPL model, implemented in
PyTorch [8], along with our modifications, is presented in
Fig. 15.

In addition to using the generative kinematic SMPL em-
bedding part of the full HMR network, our implementa-
tion constrains the input parameters to keep angles within
human limits and body shape parameters inside our initial
sampling range. To constrain the input parameters, we nor-
malize the parameters to a range [−1, 1] based on the limits
ΨL, ΨU , and use a tanh function for a soft limit that is more
amenable to gradient descent. Then, we perform a reverse
normalization to scale back up. To prevent the tanh from
clipping feasible values at the angle limits, for example a

6

Figure 16. PressureNet: Pressure Map Reconstruction (PMR). PMR is fully differentiable, and performs sorting, filtering and patching to
reconstruct spatial maps from the human mesh.

straight knee that is at 0 degrees, we inflate the angle range
by a factor α = 1.2 as shown in the figure.

PMR - Pressure Map Reconstruction. PMR, a novel
component of PressureNet, takes as input a human mesh in
global space V̂ , and outputs a set of reconstructed spatial
maps {Q̂, ĈO}, which resemble a real pressure image and
indicate where contact occurs between the estimated mesh
and the bed. We reconstruct these maps differentiably as
depicted in Fig. 16, meaning that we can backpropagate
gradients through PMR to train the CNN. The PMR loss is
based on the error between estimated spatial maps {Q̂, ĈO}
and ground truth spatial maps {Q, CO}. PMR works by pro-
jecting the mesh onto the surface of the bed and computing
the distance that it sinks into the bed over each taxel. This
amounts to finding the distance between the lowest vertex
within the 2.9 × 2.9 cm area of each taxel and the unde-
formed height of the bed.

The PMR input V̂ is in units of meters, which we con-
vert to units of taxels (1 m ∼ 35 taxels), so it can be indexed
on the scale of the pressure image. We then use a process
involving sorting, filtering, and patching to recreate the spa-
tial maps, which is detailed in Fig. 16.

B.2. PressureNet Loss Function

We compute a loss on joint error rather than vertex error
because the vertices are highly concentrated in some areas
like the face and hands for aesthetic reasons, rather than
for representing overall pose. Moreover, training the first
network module (“Mod1”) with reconstruction of 24 joint
positions rather than a full set of vertices is much faster.

Figure 17. PressureNet deep learning in action, showing an exam-
ple from our synthetic test set. The first network module (“Mod1”)
outputs an initial coarse pose estimate (right leg shown) and a
reconstructed pressure map Q̂1. The second network module
(“Mod2”) corrects the estimated black mesh by a small angle dif-
ference based on the spatial residual between P and Q̂1.

The purpose of the second network module (“Mod2”) is
to fine-tune an initial estimate from Mod1 using both re-
constructed pressure maps as input and a loss function with
spatial map awareness. Fig. 17 shows a real example of
how Mod2 corrects the initial mesh estimate from Mod1 us-
ing PMR. Note the spatial difference in the input images for
Mod2, where the reconstructed map of the foot pressure in
Q̂1 is shifted further right than the information on pressure
image P .

7

test ct. test ct. 3DVPE 3DVPE
pose partition real synth real (cm) synth (cm)

supine straight limbs 76 1000 3.71 2.68
supine general 159 2000 4.51 3.40

supine crossed legs 78 1000 4.49 3.41
prone hands up 80 1000 5.12 4.24

general, roll ∼ U [−π, π] 479 6000 5.39 4.30
supine hands behind head 80 1000 5.09 4.40

gender partition
F 480 6000 4.88 3.85
M 472 6000 5.10 4.04

Table 5. Partitioned results for prescribed poses with the best net-
work for each real and synthetic.

B.3. PressureNet Training Details

We build PressureNet in PyTorch [9], which is shown
at a high level in Figure 6 (b). For both Mod1 and Mod2,
we used a learning rate of 0.00002 and a weight decay of
0.0005, which are the same used in [4]. We used the Adam
optimizer for gradient descent [7]. Training Mod2 for 100
epochs using 184K images took 3 days on a Nvidia Tesla
K80 GPU. Training Mod2 took 8 days due to increased
computation from PMR.

B.4. Results for Separate Partitions

Table 5 shows the results of our PressureNet evaluated
between prescribed resting poses from participants in bed,
and a per-gender comparison.

B.5. Additional Failure Cases

We present additional failure cases in Fig. 18. One limi-
tation is that our network does not have an interpenetration
error, so the limbs sometimes intersect, e.g. the left hand in
Fig. 18(a)-top left. Our network also failed for some limbs
when there was little or no contact information, and for
non-resting poses. This issue is related to the limitations of
the sensor, which were explored in [4]. Our network failed
for non-resting poses, such those in [4]; however these are
not part of the training or testing PressurePose dataset. We
observed some inaccuracies when testing on training data
(Figs. 9 and 18), which suggests that there is a performance
limitation on the network’s ability to extract pressure image
features in some scenarios.

References
[1] I. Akhter and M. J. Black. Pose-conditioned joint angle lim-

its for 3d human pose reconstruction. In CVPR, 2015. 5
[2] Federica Bogo, Angjoo Kanazawa, Christoph Lassner, Peter

Gehler, Javier Romero, and Michael J. Black. Keep it SMPL:
Automatic estimation of 3D human pose and shape from a
single image. In ECCV, pages 561–578. Springer, 2016. 2

[3] Donna C. Boone and Stanley P. Azen. Normal range of mo-
tion of joints in male subjects. Journal of Bone and Joint
Surgery, 61(5):756–759, 1979. 6

Figure 18. (a) Real data failure cases. Self penetration of inferred
left hand into chest (top), lack of information on mat leading to
inaccurate pose (bottom). (b) Synthetic data failure cases: testing
on training data, various inaccuracies.

[4] Henry M. Clever, Ariel Kapusta, Daehyung Park, Zackory
Erickson, Yash Chitalia, and Charles C. Kemp. 3D human
pose estimation on a configurable bed from a pressure image.
In IROS, pages 54–61. IEEE, 2018. 2, 5, 8

[5] Nikolaus Hansen, Sibylle D. Müller, and Petros Koumout-
sakos. Reducing the time complexity of the derandomized
evolution strategy with covariance matrix adaptation (cma-
es). Evolutionary Computation, 11(1):1–18, 2003. 3, 4

[6] Angjoo Kanazawa, Michael J. Black, David W. Jacobs, and
Jitendra Malik. End-to-end recovery of human shape and
pose. In CVPR, pages 7122 – 7131. IEEE, 2018. 6

[7] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization, 2014. 8

[8] MandyMo. PyTorch HMR -
https://github.com/MandyMo/pytorch HMR, 2018. 6

[9] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-
ban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch. 2017. 8

[10] Anurag Ranjan, Javier Romero, and Michael J. Black. Learn-
ing human optical flow. In British Machine Vision Confer-
ence. BMVA Press, 2018. 6

[11] Asbjørn Roaas and Gunnar BJ Andersson. Normal range
of motion of the hip, knee and ankle joints in male sub-
jects, 3040 years of age. Acta Orthopaedica Scandinavica,
53(2):205–208, 1982. 6

[12] J. M. Soucie, C. Wang, A. Forsyth, S. Funk, M. Denny, K. E.
Roach, D. Boone, and Hemophilia Treatment Center Net-
work. Range of motion measurements: reference values and
a database for comparison studies. Haemophilia, 17(3):500–
507, 2011. 6

[13] Aydin Tözeren. Human Body Dynamics: Classical Mechan-
ics and Human Movement. Springer, 1999. 2

[14] Thiemo Wiedemeyer. IAI Kinect2. https://github.
com/code-iai/iai_kinect2, 2014 – 2015. Accessed
June 12, 2015. 5

https://github.com/code-iai/iai_kinect2
https://github.com/code-iai/iai_kinect2

