
Detecting Adversarial Samples Using Influence
Functions and Nearest Neighbors

Supplementary Material

Gilad Cohen
Tel Aviv University

Tel Aviv, 69978
giladco1@mail.tau.ac.il

Guillermo Sapiro
Duke University

North Carolina, 27708
guillermo.sapiro@duke.edu

Raja Giryes
Tel Aviv University

Tel Aviv, 69978
raja@tauex.tau.ac.il

1 Method

The main paper proposes a new reactive detection method for adversarial images: the Nearest
Neighbors Influence Functions (NNIF). Our detector utilizes a influence functions algorithm as
shown in Koh and Liang [2017] to measure the contribution of each training sample to a test samples
prediction. Their algorithm is summarized in Algorithm 1. For measuring the influence a train sample
z has on the loss of a specific test sample ztest, Koh and Liang [2017] approximate this term:

Iup,loss(z, ztest) = −∇θL(ztest, θ)TH−1θ ∇θL(z, θ), (1)

where H is the Hessian of the machine learning model, L is its loss, and θ are the model parameters.
Eq. (1) is repeated throughout the training set, calculating Iup,loss for every training sample. For our
NNIF algorithm only the top M helpful training examples (H+

inds) and the top M harmful training
examples (H−inds) are chosen for further processing.

Algorithm 1 Influence Functions
Input: Test sample (xi, yi) and a training set (Xtrain, Ytrain)
Input: M : Number of top influence samples to collect
Output: H+

inds, H
−
inds . Most helpful/harmful training examples indices

1: Ntrain = |Xtrain|
2: Initialize H+

inds=[], H−inds=[]
3: Initialize Iup,loss = zeros[Ntrain]
4: for (xj , yj) in (Xtrain, Ytrain) do
5: Iup,loss[j] = −∇θL(xi, θ)TH−1θ ∇θL(xj , θ) . Apply influence function (Eq. (1))
6: end for
7: sort(Iup,loss[j]) . Sorting for the most influential training samples
8: for m in [0,M − 1] do
9: j+m = Training example index of Iup,loss[Ntrain −m] . choosing most helpful examples

10: H+
inds.append(j+m)

11: j−m = Training example index of Iup,loss[m] . choosing most harmful examples
12: H−inds.append(j−m)
13: end for
14: return H+

inds, H
−
inds . Most helpful/harmful training examples indices

2 Experimental setup

The DNNs clean accuracies, when not under attack, are shown in Table 1. In Table 2 we present
the attack success rate of the Fast Gradient Sign Method (FGSM) (Goodfellow et al. [2015]),
Jacobian-based Saliency Map Attack (JSMA) (Papernot et al. [2016]), Deepfool (Moosavi-Dezfooli
et al. [2016]), Carlini & Wagner (CW) (Carlini and Wagner [2017]), our CW-Opt attack, Projected
Gradient Descent (PGD) (Madry et al. [2018]), and Elastic-net Attack on Dnns (EAD) (Chen et al.
[2018]). Note that the success rates of all attacks are higher for CIFAR-100. This makes sense since
CIFAR-100 dataset has 100 classes instead of 10, and it is thus more vulnerable to misclassifications.

Table 1: DNN clean accuracies (%), for normal images not under attack.

Dataset train acc val acc test acc
CIFAR-10 99.75 93.70 92.08

CIFAR-100 96.80 70.80 67.99
SVHN 99.46 96.20 94.59

Table 2: Adversarial attack success rates (%) of FGSM, JSMA, Deepfool, CW, CW-Opt, PGD, and
EAD. CW-Opt attack is CW regulated with a loss term optimized against our NNIF defense in a
white-box setting.

Dataset FGSM JSMA Deepfool CW CW-Opt PGD EAD
val test val test val test val test val test val test val test

CIFAR-10 80.47 79.27 71.18 70.21 94.34 96.19 93.70 94.46 86.87 86.31 79.62 80.51 46.64 48.14
CIFAR-100 95.19 95.26 86.02 86.19 100.00 99.91 99.44 98.90 99.15 99.10 99.58 99.25 86.86 89.41

SVHN 84.72 85.51 69.02 65.51 92.62 92.45 93.24 95.69 49.69 45.96 39.09 47.73 75.99 77.44

The paper explains how we tuned the hyper-parameters for the four inspected algorithms: DkNN,
LID, Mahalanobis, and our NNIF method. For the DkNN and LID algorithms we tuned the number
of neighbors (k), for the Mahalanobis algorithm we tuned the noise magnitude (ε), and for our NNIF
method we set the number of top influence samples to collect (M). All parameters were chosen using
nested cross entropy validation within the validation set, based on the AUC values of the detection
ROC curve. The results are shown in Table 3.

Table 3: Hyper-parameter setting for the four inspected detectors. k denotes the number of nearest
neighers used in DkNN and LID algorithms, ε is the noise magnitude in the Mahalanobis detector,
and M is the number of most helpful/harmful training images used in our NNIF method.

Dataset Param FGSM JSMA Deepfool CW PGD EAD

CIFAR-10

DkNN (k) 4900 5000 4900 4900 4800 4900
LID (k) 18 18 18 18 24 16

Mahalanobis (ε) 0.0002 0.0002 0.00005 0.00001 0.00005 0.00001
NNIF (M) 50 200 100 200 450 500

CIFAR-100

DkNN (k) 490 450 20 430 500 10
LID (k) 10 10 10 10 10 10

Mahalanobis (ε) 0.005 0.005 0.0005 0.00001 0.01 0.0002
NNIF (M) 30 30 40 40 50 30

SVHN

DkNN (k) 3200 3000 1400 3200 3200 3200
LID (k) 18 22 22 22 22 24

Mahalanobis (ε) 0.001 0.0005 0.00005 0.00001 0.00008 0.00001
NNIF (M) 300 50 300 50 100 100

2

3 Detection of adversarial attacks

Figure 1 presents two ROC curves for classification of Deepfool and CW adversarial attacks on
the CIFAR-10 dataset. One can observe that our NNIF method (solid red line) achieves better
classification power over the previous state-of-the-art methods.

Figure 1: ROC curves for classifying adversarial examples. (a) Defending Deepfool attack. (b)
Defending Carlini-Wagner (CW) L2 attack. All plots correspond to the CIFAR-10 dataset. We
achieve state-of-the-art results, surpassing previous defense methods by a large margin.

Table 4 presents the AUC scores for the adversarial detection of FGSM, JSMA, Deepfool, CW, PGD,
and EAD attacks on CIFAR-10, CIFAR-100, and SVHN datasets. These results were obtained by
using DNN’s features from only the embedding space. A similar table with detectors which were
trained on the entire DNN’s features is in the main paper.

Table 4: Comparison of AUC scores (%) for various adversarial detection methods, for FGSM, JSMA,
Deepfool, CW, PGD, and EAD attacks. Results obtained using only the DNN’s penultimate layer.

Dataset Detector FGSM JSMA Deepfool CW PGD EAD

CIFAR-10

DkNN 87.81 95.37 95.82 96.88 86.83 85.20
LID 90.12 94.67 95.43 97.66 90.49 82.87

Mahalanobis 96.80 98.95 96.49 96.96 92.91 85.30
NNIF (ours) 87.75 97.67 99.82 99.05 94.01 88.06

CIFAR-100

DkNN 93.65 83.46 76.71 93.77 73.78 78.42
LID 80.68 74.33 52.25 67.84 72.25 52.10

Mahalanobis 83.90 90.20 62.05 71.60 72.46 61.65
NNIF (ours) 87.23 86.63 84.20 94.58 83.09 72.42

SVHN

DkNN 85.24 94.61 91.13 95.15 79.07 84.77
LID 88.38 94.31 92.00 95.64 80.92 86.74

Mahalanobis 98.14 99.15 96.07 98.26 90.41 92.95
NNIF (ours) 91.06 98.29 97.11 98.68 92.46 93.72

3

4 Ablation study

To inspect how the four learned features influence our adversarial detection we conducted an ablation
study on CIFAR-10 dataset, for four attacks: FGSM, JSMA, Deepfool, and CW. The results are
shown in Table 5. From these results, one may conclude that the most beneficial feature is DM↑,
which is the L2 distance from the most helpful training examples on the deep neural network (DNN)
embedding space.

Figure 2 shows the probability density functions for RM↑, DM↑, and DM↓ features on CIFAR-10
for the Deepfool and CW adversarial attacks. From these histograms, it can be easily observed that
RM↑ or DM↑ are more useful for detecting Deepfool adversarial attacks than CW attacks. On the
other hand, the DM↓ feature discriminates CW attacks better than Deepfool attacks. This is also
supported by the results on Table 5: For RM↑ or DM↑ alone NNIF detects Deepfool better than CW
(98.27% > 81.91% and 99.79% > 97.27%), however, for DM↓ NNIF is able to detect CW attacks
better than Deepfool attacks (89.97% > 82.11%).

Table 5: Ablation test for adversarial attack detection: Calculating AUC score and accuracy for
selected features. Attacking CIFAR-10 dataset using FGSM, JSMA, Deepfool, and CW.

RM↑ DM↑ RM↓ DM↓ FGSM JSMA Deepfool CW
78.99 83.23 82.11 89.97
51.4 51.93 66.14 53.14

82.08 85.11 83.25 90.27
84.19 97.41 99.79 97.27
86.74 97.54 99.82 98.81
84.20 97.41 99.79 97.27
87.74 97.66 99.81 99.0
64.85 85.27 98.27 81.91
80.19 85.4 97.73 95.14
64.31 85.34 98.28 81.95
83.14 85.97 97.62 95.34
84.18 97.43 99.79 97.21
86.66 97.51 99.81 98.85
84.22 97.44 99.79 97.21
87.75 97.67 99.82 99.05

4

Figure 2: Probability density functions of the most helpful ranks (RM↑, top row), most helpful
distances (DM↑, middle row), and the most harmful distances (DM↓, bottom row), on CIFAR-10 for
the Deepfool and CW attacks. The features for the normal (untempered) images that were correctly
classified by the network are shown in blue. The features for the adversarial images are shown in
orange. The features for the normal images that were misclassified by the network are shown in green
(in the middle row).

5

5 Generalization to other attacks

The main paper measures the NNIF method transferability from one attack (FGSM) to other, unseen
attacks (JSMA, Deepfool, CW, PGD, and EAD), where all the features are extracted from the
penultimate activation layer. Here we provide a similar table where all the DNN’s activation layers
are employed for this comparison (Table 6), except of DkNN which only utilizes features from
the DNN’s embedding space. The generalization results in Table 6 does not have a definite winner
method. The DkNN, Mahalanobis, and our NNIF methods demonstrate the best transferability for
various setups. The LID detector shows the worst generalization overall.

Table 6: Generalization of adversarial detection from FGSM attack to unseen attacks. The LR classifier
is trained on all activation layers’ features extracted after applying FGSM attack, and then evaluated
on JSMA, Deepfool, CW, PGD, and EAD.

Dataset Detector FGSM JSMA Deepfool CW PGD EAD(seen)

CIFAR-10

DkNN 87.81 94.89 95.21 96.76 85.10 83.28
LID 98.18 91.70 84.51 91.67 85.62 70.85

Mahalanobis 99.80 96.11 86.25 85.17 84.24 68.30
NNIF (ours) 99.96 92.76 79.84 84.44 81.66 70.02

CIFAR-100

DkNN 93.65 83.16 62.41 92.22 73.60 62.67
LID 92.33 72.65 51.19 59.09 64.49 51.00

Mahalanobis 99.87 82.26 52.15 53.72 52.94 52.58
NNIF (ours) 99.96 89.52 64.33 86.43 85.79 63.64

SVHN

DkNN 85.24 93.43 89.84 92.20 75.99 79.81
LID 99.92 94.91 82.55 82.26 69.90 73.40

Mahalanobis 100.00 99.18 92.24 86.87 82.57 81.06
NNIF (ours) 100.00 92.45 80.14 83.20 75.74 75.52

6

6 Attack against NNIF

We applied a white-box attack against our NNIF defense model on CIFAR-10/100 and SVHN datasets,
CW-Opt (Section 4.5 in the main paper). This attack optimization requires a hyper-parameter in the
new regularization term, M . This is the number of the most helpful training examples of the normal
image. We apply this term only on the top 1% helpful training samples which belong to the predicted
class (we find this to be most effective for the attack to succeed). Therefore, we set M = 50 for
CIFAR-10 and SVHN and M = 5 for CIFAR-100. Table 7 shows the DkNN, LID, Mahalanobis,
and our NNIF detection accuracies on two scenarios: 1) With the vanilla CW attack and 2) With our
white-box attack (CW-Opt).

Table 7: Attack failure rate without defense (%) and defense accuracy (%) for a white-box attack
targeting the NNIF detector. The attack failure rate in the third column corresponds to the probability
of the adversary to fail flipping a correct label without any defense method.

Dataset Attack Attack fail rate Defense accuracy (%)
(w.o. defense) (%) DkNN LID Mahalanobis NNIF

CIFAR-10 CW 5.54 93.45 91.43 90.70 91.95
CW-Opt 13.69 90.99 89.74 92.29 90.81

CIFAR-100 CW 1.10 87.42 61.37 64.16 85.42
CW-Opt 0.90 94.16 66.05 51.98 91.15

SVHN CW 4.31 91.03 87.91 93.24 94.65
CW-Opt 54.04 65.59 70.21 77.23 75.21

For CIFAR-10 we observe only a 1% decrease in our NNIF adversarial detection accuracy. Similar
decrease is present also for all the algorithms which utilize L2 distance of nearest neighbors in the
embedding space: DkNN and LID.

For SVHN we observe that CW-Opt attack impairs our NNIF defense by 20%. We speculate this is
because CW-Opt was able to flip only 46% of labels in the SVHN test set, instead of 96% where
attacking with the vanilla CW. Therefore, in the white-box setting we consider only the hardest test
samples for our detection task. We also notice that DkNN and LID defense accuracies are decreased
by more than 20% as well.

The results for CIFAR-100 are unconformable to the other datasets, showing an increase of the NNIF
detection accuracy in the white-box setting. This finding also presents with DkNN and LID, which
is correlative to the trend shown on CIFAR-10. This happens since the attack focuses only on the
most helpful distance feature and our defense takes into account also other parameters. Therefore, to
verify our white-box attack indeed brings an adversarial image closer to its natural image’s helpful
training images (in the embedding space), we repeated the experiment by only collecting the distance
features, DM↑, in our defense and ignoring the ranks,RM↑. This method demonstrates a decrease of
the detection accuracy from 74% to 65%. This shows that indeed the white box attack also affects
CIFAR-100 when it relies only on distance features. The detection accuracies using only DM↑ are
summarized in Table 8. Note that our defense technique is always robust to the white-box attacks
when it only uses the distance features. The fact that we show robustness also when considering the
ranks features makes it even stronger since it is hard to optimize the white-box attacks to ranks (as
they are non-differentiable).

Overall, we conclude that our NNIF defense method is robust in a white-box setting.

Table 8: Defense accuracy (%) for a white-box attack targeting the NNIF detector, using only the
distance features DM↑.

Dataset Attack NNIF defense acc.

CIFAR-10 CW 91.96
CW-Opt 90.91

CIFAR-100 CW 74.09
CW-Opt 65.48

SVHN CW 94.65
CW-Opt 75.27

7

7 Influence function smoothness

Since we use ReLU activations in our Resnet-34 DNN, the cross entropy loss function is not
continuously differentiable, therefore we might have an issue calculating the influence function in
Eq. (1). Although this is a technical concern, in practice we can assume this is not an issue since
the set of discontinuities has measure zero, and the problematic activation points will never be
encountered in the back propagation.

8

References
Nicholas Carlini and David A Wagner. Towards evaluating the robustness of neural networks. 2017 IEEE

Symposium on Security and Privacy (SP), pages 39–57, 2017.

Pin-Yu Chen, Yash Sharma, Huan Zhang, Jinfeng Yi, and Cho-Jui Hsieh. Ead: Elastic-net attacks to deep neural
networks via adversarial examples. In AAAI, 2018. URL https://www.aaai.org/ocs/index.php/AAAI/AAAI18/
paper/view/16893.

Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. In
ICLR, 2015. URL http://arxiv.org/abs/1412.6572.

Pang Wei Koh and Percy S. Liang. Understanding black-box predictions via influence functions. In ICML, 2017.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards deep
learning models resistant to adversarial attacks. In ICLR, 2018. URL https://openreview.net/forum?id=
rJzIBfZAb.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: A simple and accurate
method to fool deep neural networks. CVPR, pages 2574–2582, 2016.

Nicolas Papernot, Patrick D McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik, and Ananthram Swami.
The limitations of deep learning in adversarial settings. IEEE European Symposium on Security and Privacy
(EuroS&P), pages 372–387, 2016.

9

