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A. Appendix
A.1. Monotonicity of F -norm and Entropy

To prove the strict opposite monotonicity between F -
norm and entropy, we seperately analyze their monotonicity
and then compare their bounds and monotonicity.

The F -norm of matrix A is the square root sum of all
the elements in A. The calculation process could be divided
into two process, we could first calculate the quadratic sum
of each row in A and then calculated the square root of sum
of all the rows. Besides the condition that the monotonicity
of square root of sum of all the rows depends on the mono-
tonicity of each row, there is no extra constraint on different
rows. Thus we could simply consider the monotonicity of
quadratic sum of each row to analyze the monotonicity of
the F -norm on matrix. Similar for the entropy, we could
also simply analyze the monotonicity of each row.

We take the row i for example, and denote the square
sum of row i as f(Ai), thus f(Ai) could be calculated as:

f(Ai) =

C∑
j=1

A2
ij . (1)

To analyze the monotonicity of a function of several input
variables, we could analyze the monotonicity of the func-
tion on each variable. It should be noted that

∑C
j=1 Aij =

1. Actually the variables are supposed to be independent,
but to satisfy the constraint of the sum 1, we assume the
variable AiC is the only variable dependent on Aij . Thus
the partial derivative of f(Ai) could be calculated as:

∂f(Ai)

∂Aij
= 2Aij − 2AiC

= 4Aij − 2(1−
C−1∑

k=1,k 6=j

Aik),

(2)

where f(Ai) reachs the bound when Aij = 1
2 −

1
2

∑C−1
k=1,k 6=j Aik. When Aij ≤ 1

2 −
1
2

∑C−1
k=1,k 6=j Aik and

∂f(Ai)
∂Aij

≤ 0, f(Ai) will monotonously decrease. When

Aij ≥ 1
2 −

1
2

∑C−1
k=1,k 6=j Aik and ∂f(Ai)

∂Aij
≥ 0, f(Ai) will

monotonously increase.

For the entropy, we denote the entropy of row i as h(Ai),
and h(Ai) could be calculated as follows:

h(Ai) = −
C∑

j=1

Aij log(Aij). (3)

Similarly, the partial derivative of h(Ai) could be calculated
as:

∂h(Ai)

∂Aij
= − log(Aij) + log(AiC)

= log(
1−Aij −

∑C−1
k=1,k 6=j Aik

Aij
)

(4)

where h(Ai) reachs the bound when Aij = 1
2 −

1
2

∑C−1
k=1,k 6=j Aik. When Aij ≤ 1

2 −
1
2

∑C−1
k=1,k 6=j Aik and

∂h(Ai)
∂Aij

≥ 0, h(Ai) will monotonously increase. When

Aij ≥ 1
2 −

1
2

∑C−1
k=1,k 6=j Aik and ∂h(Ai)

∂Aij
≤ 0, h(Ai) will

monotonously decrease. This validates that the F -norm and
entropy of matrix f(Ai) have strict opposite monotonicity.

A.2. Relationship between Nuclear-norm and F -
norm

We reanalyze the relation between ‖A‖∗ and ‖A‖F . We
denote× as the matrix multiplication and the trace of matrix
A×A> is as follows:

trace(A×A>) =

B∑
i=1

C∑
j=1

Ai,j ·Ai,j

= (‖A‖F )
2

(5)

The trace of A×A> equals to the sum of eigenvalues of
A×A>. While the calculated eigenvalues of A×A> is the
square of singular value of A. We denote the ith largest sin-
gular value as σi. Thus trace(A× A>) becomes quadratic
sum of singular values of matrix A:

trace(A×A>) =

D∑
i=1

σ2
i . (6)



Combining Eqn. 5 and 6, we could find that:

(‖A‖F ) =

√√√√ D∑
i=1

σ2
i , (7)

where the number of the singular values is denoted as D
and D = Min(B,C). For the matrix A, the calculation of
the nuclear-norm could be achieved by the sum of singular
values of A. Thus the nuclear-norm could be calculated as
follows:

‖A‖∗ =
D∑
i=1

σi, (8)

Thus we could find the upper-bound of ‖A‖∗ as:

‖A‖∗ =

√√√√(

D∑
i=1

σi)2 ≤

√√√√D ·
D∑
i=1

σ2
i =
√
D · ‖A‖F ,

(9)

where if ‖A‖∗ =
√
D · ‖A‖F , all the singular values will

be the same. Similarly, we could obtain the lower-bound of
‖A‖∗ as:

‖A‖∗ =

√√√√(

D∑
i=1

σi)2 ≥

√√√√· D∑
i=1

σ2
i = ‖A‖F , (10)

Combining Eqn. 9 and 10, we could summarize the rela-
tionship as follows:

1√
D
‖A‖∗ ≤ ‖A‖F ≤ ‖A‖∗ ≤

√
D · ‖A‖F . (11)

Thus ‖A‖∗ and ‖A‖F could bound each other.

A.3. The Nuclear-norm Calculation in Eqn. (8)

We assume B and C are 2. In this case, A could be
expressed as:

A =

[
x 1− x
y 1− y

]
, (12)

where x and y are variables. To calculate the singular val-
ues, we build a new matrix A×A> as follows:

A×A> =

[
x2 + (1− x)2 xy + (1− x)(1− y)

xy + (1− x)(1− y) y2 + (1− y)2
]
,

(13)
where we could calculate the eigen values of matrix A×A>
by:

|A×A> − λI| = 0. (14)

Thus we could substitute into the value of A × A> as fol-
lows:∣∣∣∣ x2 + (1− x)2 − λ xy + (1− x)(1− y)

xy + (1− x)(1− y) y2 + (1− y)2 − λ

∣∣∣∣ = 0.

(15)
By integrating the equation, we could obtain the following
results:

λ2 − 2(x2 − x+ y2 − y + 1)λ+ (y − x)2 = 0. (16)

Considering that there are only two singular values in this
situation, we denote them as σ1 and σ2. While the solution
of the Eqn. 16 is the square of the singular values. Thus we
could find that:

σ2
1 + σ2

2 = 2(x2 − x+ y2 − y + 1)

σ2
1 · σ2

2 = (y − x)2
(17)

The sum of the singular values is calculated as follows:

σ1 + σ2 =
√
(σ1 + σ2)2

=
√

(σ2
1 + σ2

2 + 2σ1σ2

=
√

(2(x2 − x+ y2 − y + 1) + 2|y − x|

(18)

Then the nuclear-norm could be calculated as:

‖A‖∗ =
√
x2 + (1− x)2 + y2 + (1− y)2 + 2|y − x|,

(19)


