
A. MCMC - pseudo code
In Section 5 we already gave a rough description of our

MCMC initialization algorithm. Here, we provide a more
detailed pseudo code:

Algorithm 3. (MCMC)

1. Initialize τbest := 0,X∗
best := X.

2. For i = 1, ..., Nprop:

2.1 Sample new proposal τprop ∼ N (0, I).

2.2 Compute the current alignment X∗
prop by making

a surrogate run with the initial guess τprop.

2.3 Compute the acceptance probability α :=

exp

�
− 1

2σ2
match

�
E(X∗

prop) − E(X∗
best)

��
using

the energy E from Eq. (12).
2.4 Sample u ∼ Unif(0, 1) and either accept or re-

ject the new sample τprop ∈ RKinit×3:

(τbest,X
∗
best) :=�

(τprop,X
∗
prop), u ≤ α (accept)

(τbest,X
∗
best), u > α (reject)

We usually set the number of surrogates to Nprop :=
100. In the majority of cases in our experiments this is more
than sufficient. Furthermore, we usually choose a small ob-
jective variance σ2

match := 0.001 to get a sharp distribution
and therefore more accurate samples τ .

Remarks One aspect of our method that we did not talk
about yet is how to compute a good initial rigid pose.
For most datasets in our experiments this is a requirement,
e.g. SHREC’19 [34] connectivity has random rigid poses
for all inputs. In theory, our MCMC algorithm can ac-
count for rigidly displaced inputs X and Y but in prac-
tice our Nprop = 100 surrogates are not enough for ex-
treme cases. Therefore, we initially apply another surrogate
based method that initializes with different rigid poses and
determines the best one according to the objective E from
Eq. (12). A thorough description of this is beyond the scope
of this paper, but all the details can be found in our imple-
mentation.

B. Proof of Theorem 1
Theorem 1 gives an upper bound on how much the ge-

ometry of our smooth shells can change between two states
K and K +1. For spectral reconstruction, a projection on a
new eigenfunction is added in each iteration. Depending on
the magnitude of the new projection

�
φK+1 ⊗ φK+1

�
, this

can lead to arbitrarily high changes :

�TK+1(X)−TK(X)�L2 = �
�
φK+1⊗φK+1

�
X�L2 . (14)

In comparison, Theorem 1 states that the change from
SK(X) to SK+1(X) can be bounded by choosing a small
upsampling variance σ.

Proof. We will proof the statement for scalar functions
X ∈ L2(X ). The extension to vector valued functions
L2(X ,R3) is trivial – we just need to apply the iden-
tity to each component at a time. Now let K > 0 and
σ > 0. For brevity we will denote the sigmoid weights with
sKk := 1

1+exp
�
σ(k−K)

� . Using the spectral decomposition

of operators, we can deduce:
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Taking the square root on both sides then yields the desired
identity.

Remarkably, this bound is independent of the index K.
Small eigenfunctions φk typically represent coarse struc-
tures like limbs. Therefore, in particular the first iterations
using spectral reconstruction lead to big changes in the ge-
ometry, see Eq. (14).

C. Runtime Analysis
We analyze the time complexity of our method in com-

parison to other popular matching methods in Figure 9. In
particular, we compare the runtime of the whole pipelines
for instances of the same pair of Michael shapes from the
TOSCA dataset that was remeshed to different resolutions
between 500 and 50k vertices.

D. Additional Qualitative Evaluations
We provide some additional qualitative evaluations and

comparisons of our pipeline in order to give the reader a
better understanding about the merits of our method, see
Figure 10. Additionally, we provide a failure case in Fig-
ure 11. Our method is deformation based with an as-
rigid-as-possible assumption. This means that in places of
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Figure 9: We compare the runtimes of our method with BCICP [42], Kernel matching [56] and Zoomout [35]. To this end,
we remesh the Michael shape from TOSCA to different resolutions, on the right side we display the pair for N = 1000.
Besides the runtime we also compare the matching accuracies of all methods. Here, our method is the most accurate one and
stable across resolutions, whereas our runtime is the second best after Zoomout.
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Figure 10: Here, we show additional qualitative evaluations of our method. (a) and (b) are comparisons for a pair from
the SHREC’19 and the SCAPE dataset respectively. (a) is challenging due to an incompatible meshing, (b) has equivalent
meshing but is still susceptible to mismatches due to self-similarities (left-right: BCICP, front-back: KM, Zoomout). (c)
shows how our method can be used to smoothly transfer meshings for interclass pairs, here for a gorilla from TOSCA to
humans from FAUST. The maps are smooth in the sense that local structures are preserved and deformations only occur in
the form of uniform, global stretching of parts. I.e. the face still looks like a gorilla after deformation although the rest of the
body adapts to the human form. (d) shows a texture transfer from a template hand (right) to a scanned hand of a puppet (left).
The latter is a scan of a real world object from [14], obtained with the handheld Space Spider scanner from Artec. This is a
challenging example due to different resultions of the inputs, different small scale features and a different size of the residual
part at the bottom. (e) shows how our method can be applied to deform an object (red chair) and align it with a reference
shape (black chair) to create a new object. The deformed red chair X∗ has the global structure of Y and the fine scale details
of X .
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Figure 11: A failure case of our method for a pair of shapes
from TOPKIDS. If we align the the canonical pose X with
the reference Y we get a meaningful alignment X∗ and high
quality correspondences. However, if we try to apply our
method the other way around, we get undesirable ”cheese
pull” effects at the left hand of the deformed kid Y ∗. The
reason for that is that in the pose Y the fingers touch the left
knee and the meshing connects. In order to avoid this effect,
we either need a mesh separation policy or use an interme-
diate template where the original topology is known. We
prefer the latter approach in our quantitative evaluations on
FAUST and TOPKIDS because finding a meaningful topo-
logical cut is a complicated problem on its own.

topological changes the meshing cannot be separated. Our
method still tries to align the shape as good as possible with
the reference which invariably leads to a ”cheese pull” ef-
fect. This is also the main reason why we use an intermedi-
ate template to match the FAUST and TOPKIDS shapes in
our quantitative evaluations.


