
Supplementary Material: Neural Implicit Embedding for Point Cloud Analysis

1. Robustness of Representation
1.1. Rotational Invariance

We evaluate the robustness of the proposed canonical
projection. We compared our projection approach with an-
other commonly used approach to align shapes, which is
by conducing principal component analysis (PCA) on sur-
face points themselves. We used the Stanford bunny,which
consists of approximately 30000 vertices, and randomly se-
lected 10000, 5000, and 1000 points from the point cloud
10 different times.

For PCA based alignment, we conducted PCA on each
of the sampled point sets directly, and computed the eigen-
vector corresponding to the largest eigenvalue. We then
measured the cosine similarity between all the pairs of the
first eigenvectors. For our method, we obtained the dis-
tance field by measuring the distance from random sam-
pling points in a unit sphere to the selected object points.
We conducted SVD on the matrix created by the sampling
point coordinates and its distance function output. We mea-
sured the cosine similarity of the first column of V̄, which
is the projection to the first axis of the canonical space.

Table 1 shows the mean and the standard deviation of all
the cosine similarity values in each method. PCA directly
on surface points returns a relatively stable transformation
at highly sampled data, but quickly deteriorates when only
small subset of the points are small. Our method, in con-
trast, is robust to both the surface point sampling density
and the spatial sampling density, as both the mean and the
standard deviation values barely change. This suggests that
our alignment method, regardless of the density of the point
cloud of the target shape, produces a robust representa-
tion. This is due to the fact that points are of the shapes
are implicitly embedded into before being transformed into
canonical representations. The implicit representation is a
non-parametric representation of the shape, therefore, it is
unaffected by the resolution of the original point cloud.

1.2. Accuracy of ELM Embedding

We evaluate how accurately ELM captures the distance
field. We train an ELM to capture the distances from ran-
dom sampling points scattered within a sphere to the closest
points in the point cloud. We then compare the distance val-
ues that the trained ELM returns against the ground truth

methods 10K pts 5K pts 1K pts
PCA mean 0.9997 0.9384 0.7549
PCA st. d. 0.00027 0.1107 0.22898
ours 50K µ 0.9999 0.9999 0.9970
ours 50K σ 4.43E-07 9.73E-07 0.0057
ours 10K µ 0.9999 0.9999 0.9997
ours 10K σ 2.76E-06 4.66E-06 0.0003
ours 5K µ 0.9999 0.9999 0.9995
ours 5K σ 1.05E-06 1.94E-05 0.0005

Table 1: Comparison of the deviation of principle axes. We
compared the mean pairwise cosine similarity and the stan-
dard deviation of the vector transforming the input to the
first principle axis. Applying PCA on point cloud data is
robust when the points are dense, but quickly deteriorates.
Our method, on the other hand, uses a spatial representa-
tion, making the decomposition robust to point density.

sampling density 256 512 1024 2048

k=256 0.0435 0.0485 0.0545 0.0584

Table 2: RMSE between distance values reconstructed us-
ing ELMs and the ground truth distances.

values. We used the Stanford Bunny as the target point
cloud in this demonstration. Dimension of the ELM weights
are set at 256, and the samplings points and the point cloud
is scaled to a unit sphere.

As can be seen from Table 2, the margin of error of re-
construction is relatively small, considering the fact that the
ELM has only one hidden layer, and that the weights W are
fixed. We therefore claim that using ELM is adequate to be
used to encapsulate local portion of the distance fields.

2. Detailed Results from Classification

2.1. Effect of Elements

We provide detailed results from the classification exper-
iment in the main manuscript. We varied the elements that
affects the outcome of the results. They are the radius of



number of sample points
256 512 1024 2048

dimension of ELM weight
k 128 256 512 128 256 512 128 256 512 128 256 512

0.1 92.51 92.73 91.63 93.28 93.17 92.51 91.30 93.28 92.84 92.07 92.84 92.51
0.2 94.49 94.93 94.60 95.37 95.37 94.27 95.04 94.82 95.15 94.27 94.82 94.16
0.3 94.93 94.93 94.60 95.82 95.92 95.26 95.04 95.26 95.26 94.27 95.26 94.82
0.4 94.38 94.60 94.49 94.60 95.26 95.37 94.93 94.49 94.71 94.60 95.04 95.37

Table 3: Accuracy for ModelNet 10 with different elements.

number of sample points
256 512 1024 2048

dimension of ELM weight
k 128 256 512 128 256 512 128 256 512 128 256 512

0.1 91.73 91.32 91.12 91.25 91.37 91.32 91.37 91.82 91.29 90.92 91.90 91.29
0.2 91.45 90.92 90.84 90.96 91.98 91.77 90.76 91.61 91.00 91.00 91.21 91.12
0.3 90.84 91.16 91.25 91.86 92.67 92.06 90.72 91.77 91.29 91.17 91.09 91.41
0.4 90.96 91.61 91.21 91.18 91.82 91.61 91.09 91.25 91.09 90.69 90.64 91.05

Table 4: Accuracy for ModelNet 40 with different elements.

the sampling spheres, number of samplings points within a
sampling sphere, and dimension of the ELM bases. Note
that points and normals are concatenated with the ELM pa-
rameters to obtain the results.

We provide the results obtained from ModelNet 10 and
ModelNet 40 in Tables 3 and 4, respectively. Median value
of 5 attempts were used to fill the chart. There is no clear
trend in the elements, except for the fact that all the elements
cannot be too small or too large to achieve optimal accuracy.

As the dimension of the input to the classification net-
work changes depending on the size of the ELM, the net-
work structure may be keeping some of the accuracies in
the table low. For the purpose of comparison, we used the
same structure for all the data. Adding or subtracting layers
for the classification network to suit the representation may
improve some of the results in the table.

There is also a high likelihood that higher accuracy can
be obtained by preparing different number of sampling
points, or dimension of ELM that was not used in this exper-
iment. We will continue to pursue the suitable combination
of elements, as there are infinite number of possible combi-
nations. Automatic identification of best possible elements
would be considered in future work.

3. Segmentation Results
Finally, we present some of the results from the point

cloud segmentation experiment. We use the ShapeNetCore
Part dataset for the experiment. We use the same setting

from the classification experiment to obtain the results. The
number of sampling points, ELM dimension, and sampling
sphere radius, are 1024, 256, and 0.3, respectively.

We first show some of the more successful segmenta-
tion results. As can be seen from Fig. 1, the successful
results provide accurate labels to parts without any confu-
sion. Our method is especially successful at identifying la-
bels of structures that sticks out, for example, the wings of
airplanes, the legs of chairs, and so on. This is due to the
fact that our embedded feature encapsulates the local region
around each point. Therefore, the context around each point
is included in the input, which facilitates the assignment of
part labels to these prominent structures on objects.

We then introduce some of the less successful results.
Fig. 2, shows the objects with less successful segmentation
predictions. As can be observed from the images, Despite
being able to assign different labels to separable parts, the
assigned labels in these cases are wrong. This is due to the
fact that the method recognized the parts, but observed the
entire object as something different, leading to parts from
that class. This is caused by concatenating the global sig-
nature from the model to each points on the model as the
input feature to segmentation classifier. Avoiding such con-
catenation may avoid these issues, and would be one of the
future directions for the task of assigning pointwise labels.



Figure 1: Accurate segmentation results. Top row: Predicted labels from the proposed method. Bottom row: Ground truth.

Figure 2: Erroneous segmentation results. Top row: Predicted labels from the proposed method. Bottom row: Ground truth.


