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1. Least-Squares Solution
Refer to Eq. (14) in the paper, by taking the partial

derivatives with {xi}4i=1 and {λi}2i=1 and set them to be ze-
ros, we obtain an equation system with unknowns {xi}4i=1
and {λi}2i=1:
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]
+ λ1x2 = 0

1

2

∂L

∂x3
=

3∑
i=1

[
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[
d2ix4 + di(aix1 + bix2 + cix3)

]
+ λ2x4 = 0

∂L

∂λ1
= x21 + x22 − 1 = 0

∂L

∂λ2
= x23 + x24 − 1 = 0

The above equation system contains 6 unknowns
{x1, x2, x3, x4, λ1, λ2}, and the order is 2.

2. Relative Pose Estimation with Known Verti-
cal Direction

We show the solution procedure of the coefficients β and
γ. To derive the solution, we start by substituting Eq. (26)
to Eqs. (27) and (28) in the paper. Six equations from the
trace constraint Eq. (28), together with a equation from the
singularity of the essential matrix Eq. (27), form a system
of 7 polynomial equations in 2 unknowns {β, γ}, which has
a maximum polynomial degree of 3. First, we stack 7 poly-
nomial equations into a matrix form as

M1v1 = 0, (1)
∗Corresponding author.

where v1 = [β3, β2γ, β2, βγ2, βγ, β, γ3, γ2, γ, 1]T , M1 is
a 7×10 coefficient matrix.

Since there is a linear dependency between the elements
of the essential matrix, i.e., e2, e4, e5 and e6, the rank of the
coefficient matrix M1 is only 6. By performing Gaussian
elimination and row operations on the 6 linearly indepen-
dent equations, we set up a new polynomial equation system
as follows:

β3 β2γ β2 βγ2 βγ β γ3 γ2 γ 1

1 . . . .

1 . . . .

1 . . . .

1 . . . .

1 . . . . 〈Qa〉
1 . . . . 〈Qb〉

where Qa = poly(βγ, γ3, γ2, γ, 1) and Qb =
ploy(β, γ3, γ2, γ, 1) represent the polynomial in the fifth
and sixth rows, respectively.

In order to eliminate the monomial βγ, we multiply Qb

with γ and subtract it from Qa:

Qc = γQb −Qa = poly(γ4, γ3, γ2, γ, 1) (2)

Now, we get an up to degree 4 polynomial in γ: Qc. The
unknown γ has at most 4 solutions and can be computed
as the eigenvalues of the companion matrix of Qc. Then
the corresponding solution for the unknown β is obtained
directly by substituting γ into Qb.

3. Experiments
3.1. Efficiency Comparison

We evaluate the run-times of our solvers and the compar-
ative solvers on an Intel(R) Core(TM) i7-8550U 1.80GHz



using MATLAB. All algorithms are implemented in Mat-
lab, except that the 5pt-Nister method is implemented
in C by using mex file. All timings are averaged over
10000 runs. Table 1 summarizes the run-times for the pla-
nar motion estimation algorithms1. The run-times of the
methods 1AC-Voting and 1AC-CS are same and quite
low, because both methods use the same solver and the
computational complexity is mainly about computing the
eigenvector of the matrix. For the methods 1AC-LS and
1AC-UnknownF, the high run-times are due to the com-
plexity of the Gröbner basis solution.

Methods 6pt-Kukelova [3] 2pt-Choi [2] 1AC-CS 1AC-LS 1AC-Voting 1AC-UnknownF
Timings 0.405 0.098 0.007 0.120 0.007 0.196

Table 1. Run-time comparison of planar motion estimation algo-
rithms (unit: ms).

Table 2 summarizes the run-times for the motion esti-
mation algorithms with known vertical direction. The run-
time of the 3pt-Saurer method is higher than the 1AC
method method due to the complexity of the Gröbner
basis solution. Since the mex file is used, the run-time
of the 5pt-Nister method is low. The run-time of
the 1AC method method is significantly lower than the
2AC-Barath method, because the essential matrix be-
tween two views is simplified when the common direction
of rotation is known, and we use a low-complexity approach
to solve the essential matrix as shown in Section 2.

Methods 5pt-Nister [4] 3pt-Sweeney [6] 3pt-Saurer [5] 2pt-Saurer [5] 2AC-Barath [1] 1AC method
Timings 0.118 0.174 2.066 0.097 65.101 1.212

Table 2. Run-time comparison of motion estimation algorithms
with known vertical direction (unit: ms).

3.2. Motion with Known Vertical Direction

In this section we show the performance of the proposed
1AC method under forward and sideways motion. Fig-
ure 1 shows the performance of the proposed method under
forward motion. Figure 2 shows the performance of the
proposed method under sideways motion.

3.3. Visual Odometry

Here we show more trajectories for the experiments with
KITTI dataset2, see Figure 3. It shows that the proposed
1AC method method has the smallest ATE among all the
compared trajectories.
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(a) εR with image noise
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(c) εR with pitch angle noise
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(d) εt with pitch angle noise
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(e) εR with roll angle noise
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Figure 1. Rotation and translation error under forward motion
(unit: degree). (a)(b): vary image noise with perfect IMU data.
(c)∼(f): vary IMU angle noise and fix the image noise as 1.0 pixel
standard deviation. The left column reports the rotation error. The
right column reports the translation error.
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(c) εR with pitch angle noise
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(e) εR with roll angle noise
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Figure 2. Rotation and translation error under sideways motion
(unit: degree). (a)(b): vary image noise with perfect IMU data.
(c)∼(f): vary IMU angle noise and fix the image noise as 1.0 pixel
standard deviation. The left column reports the rotation error. The
right column reports the translation error.
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Figure 3. Estimated visual odometry trajectories. The left column
reports the results of ORB-SLAM2. The right column reports the
results of our monocular visual odometry. Colorful curves are es-
timated trajectories, and black curves with stars are ground truth
trajectories. Best viewed in color.


