
1. Problem statement for biased datasets

Using definitions of q(x,y) and p(x,y|θ), (2) can be
analytically derived as

DKL(Qx,y‖Px,y(θ)) =∫ ∫
q(y|x)q(x) log

q(y|x)q(x)

p(y|x,θ)q(x)
dydx =∫

q(x)

∫
q(y|x) log

q(y|x)

p(y|x,θ)
dydx =

EQx [DKL(Qy|x‖Py|x(θ))].

Assuming that Qy|x can be replaced by empirical Q̂y|x
and y = 1d ∈ RD is one-hot vector with only dth class not
equal to zero, (4) can be derived as

L(θ) =
1

N b

∑
i∈Nb

[DKL(Qyi|xi
‖Pyi|xi

(θ))] =

=
1

N b

∑
i∈Nb

D∑
d=1

1d(i) log
1d(i)

p(yi|xi,θ)
=

− 1

N b

∑
i∈Nb

log p(yi|xi,θ).

2. Relationship between DKL(P
v
z ‖Pz) and

Fisher information

Using the sufficiency property [1], we approximate our
optimal acquisition function (5) using the distributions of
learned representations z as

Ropt(b, P ) = arg min
R(b,P )

DKL(P̂ v
z ‖P̂z),

Then, a connection between the main task (2) and
DKL(P v

z ‖Pz) minimization in (7) via Fisher information
can be derived with respect to small perturbations in θ.
Assuming that the task model minimizes distribution shift
in (2) every backward pass as

pv(z|θ) = p(z|θ) + ∆p,

where ∆p = ∆θ ∂p(z|θ)
∂θ and ∆→ 0.

By substituting (8), the expanded form of DKL(P v
z ‖Pz)

can be written as

DKL(P v
z ‖Pz) =

∫
(p(z|θ) + ∆p) log

p(z|θ) + ∆p

p(z|θ)
dz =∫

(p(z|θ) + ∆p) log

(
1 +

∆p

p(z|θ)

)
dz.

Using the Taylor series of natural logarithm, this can be

approximated by

DKL(P v
z ‖Pz) ≈

∫
(p(z|θ) + ∆p)×(

∆p

p(z|θ)
− (∆p)2

2(p(z|θ))2

)
dz =

∫
∆pdz+

1

2

∫ (
∆p

p(z|θ)

)2

p(z|θ)dz −
∫

(∆p)3

2p(z|θ)2
dz,

where the first term using the definition of ∆p is equal to
zero and the third O(∆θ3)→ 0.

By substituting ∆p and rewriting vector θ as a discrete
sum, the term

∆p

p(z|θ)
≈
∑
i

∂ log p(z|θ)

∂θi
∆θi.

Using this approximation, the final form of (7) can be
obtained as

Ropt(b, P ) = arg min
R(b,P )

DKL(P v
z ‖Pz)

≈ arg min
R(b,P )

∑
m,n

Im,n∆θm∆θn ≈ arg min
R(b,P )

∆θTI∆θ,

where I = EPz

[
g(θ)g(θ)T

]
is a Fisher information matrix

and g(θ) = ∂ log p(z|θ)
∂θ is a Fisher score with respect to θ.

3. Practical Fisher kernel for DNNs
Using the chain rule for a DNN layer (z̃ji = θTzji =

θTσ(z̃j−1i )) with σ(·) nonlinearity, Jacobian of interest can
be simplified as follows

∂L(yi, ŷi)

∂θ
=
∂L(yi, ŷi)

∂z̃i

∂z̃i
∂θ

=
∂L(yi, ŷi)

∂z̃i
zTi = giz

T
i ,

where θ ∈ RL×L, zi ∈ RL×1, and gi ∈ RL×1.
Then, approximation of FK in (11) for gi(θ) =

vec(∂L(yi, ŷi)/∂θ) ∈ RL2×1 can be derived as

Rz,g(zm, zn) = gm(θ)TI−1gn(θ)
PFK
≈ gm(θ)Tgn(θ) =

vec

(
∂L(ym, ŷm)

∂z̃m
zTm

)T

vec

(
∂L(yn, ŷn)

∂z̃n
zTn

)
=

vec
(
gmz

T
m

)T
vec
(
gnz

T
n

)
= [g1mzm, g

2
mzm, . . . , g

L
mzm]T×

[g1nzn, g
2
nzn, . . . , g

L
nzn] = zTmzn

L∑
l

glmg
l
n = zTmzng

T
mgn.
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