1. Problem statement for biased datasets

Using definitions of $q(\boldsymbol{x}, \boldsymbol{y})$ and $p(\boldsymbol{x}, \boldsymbol{y} \mid \boldsymbol{\theta})$, (2) can be analytically derived as

$$
\begin{aligned}
& D_{K L}\left(Q_{\boldsymbol{x}, \boldsymbol{y}} \| P_{\boldsymbol{x}, \boldsymbol{y}}(\boldsymbol{\theta})\right)= \\
& \quad \iint q(\boldsymbol{y} \mid \boldsymbol{x}) q(\boldsymbol{x}) \log \frac{q(\boldsymbol{y} \mid \boldsymbol{x}) q(\boldsymbol{x})}{p(\boldsymbol{y} \mid \boldsymbol{x}, \boldsymbol{\theta}) q(\boldsymbol{x})} d \boldsymbol{y} d \boldsymbol{x}= \\
& \quad \int q(\boldsymbol{x}) \int q(\boldsymbol{y} \mid \boldsymbol{x}) \log \frac{q(\boldsymbol{y} \mid \boldsymbol{x})}{p(\boldsymbol{y} \mid \boldsymbol{x}, \boldsymbol{\theta})} d \boldsymbol{y} d \boldsymbol{x}= \\
& \quad \mathbb{E}_{Q_{\boldsymbol{x}}}\left[D_{K L}\left(Q_{\boldsymbol{y} \mid \boldsymbol{x}} \| P_{\boldsymbol{y} \mid \boldsymbol{x}}(\boldsymbol{\theta})\right)\right] .
\end{aligned}
$$

Assuming that $Q_{\boldsymbol{y} \mid \boldsymbol{x}}$ can be replaced by empirical $\hat{Q}_{\boldsymbol{y} \mid \boldsymbol{x}}$ and $\boldsymbol{y}=\mathbf{1}_{d} \in \mathbb{R}^{D}$ is one-hot vector with only d th class not equal to zero, (4) can be derived as

$$
\begin{aligned}
\mathcal{L}(\boldsymbol{\theta}) & =\frac{1}{N^{b}} \sum_{i \in \mathbb{N}^{b}}\left[D_{K L}\left(Q_{\boldsymbol{y}_{i} \mid \boldsymbol{x}_{i}} \| P_{\boldsymbol{y}_{i} \mid \boldsymbol{x}_{i}}(\boldsymbol{\theta})\right)\right]= \\
& =\frac{1}{N^{b}} \sum_{i \in \mathbb{N}^{b}} \sum_{d=1}^{D} \mathbf{1}_{d}(i) \log \frac{\mathbf{1}_{d}(i)}{p\left(\boldsymbol{y}_{i} \mid \boldsymbol{x}_{i}, \boldsymbol{\theta}\right)}= \\
& -\frac{1}{N^{b}} \sum_{i \in \mathbb{N}^{b}} \log p\left(\boldsymbol{y}_{i} \mid \boldsymbol{x}_{i}, \boldsymbol{\theta}\right) .
\end{aligned}
$$

2. Relationship between $D_{K L}\left(P_{\boldsymbol{z}}^{\mathrm{v}} \| P_{\boldsymbol{z}}\right)$ and Fisher information

Using the sufficiency property [1], we approximate our optimal acquisition function (5) using the distributions of learned representations \boldsymbol{z} as

$$
\mathcal{R}_{o p t}(b, P)=\underset{\mathcal{R}(b, P)}{\arg \min } D_{K L}\left(\hat{P}_{\boldsymbol{z}}^{\mathrm{v}} \| \hat{P}_{\boldsymbol{z}}\right)
$$

Then, a connection between the main task (2) and $D_{K L}\left(P_{\boldsymbol{z}}^{\mathrm{v}} \| P_{\boldsymbol{z}}\right)$ minimization in (7) via Fisher information can be derived with respect to small perturbations in $\boldsymbol{\theta}$. Assuming that the task model minimizes distribution shift in (2) every backward pass as

$$
p^{\mathrm{v}}(\boldsymbol{z} \mid \boldsymbol{\theta})=p(\boldsymbol{z} \mid \boldsymbol{\theta})+\Delta p
$$

where $\Delta p=\Delta \boldsymbol{\theta} \frac{\partial p(\boldsymbol{z} \mid \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}$ and $\Delta \rightarrow 0$.
By substituting (8), the expanded form of $D_{K L}\left(P_{\boldsymbol{z}}^{\mathrm{v}} \| P_{\boldsymbol{z}}\right)$ can be written as

$$
\begin{aligned}
& D_{K L}\left(P_{\boldsymbol{z}}^{\mathrm{v}} \| P_{\boldsymbol{z}}\right)=\int(p(\boldsymbol{z} \mid \boldsymbol{\theta})+\Delta p) \log \frac{p(\boldsymbol{z} \mid \boldsymbol{\theta})+\Delta p}{p(\boldsymbol{z} \mid \boldsymbol{\theta})} d \boldsymbol{z}= \\
& \int(p(\boldsymbol{z} \mid \boldsymbol{\theta})+\Delta p) \log \left(1+\frac{\Delta p}{p(\boldsymbol{z} \mid \boldsymbol{\theta})}\right) d \boldsymbol{z}
\end{aligned}
$$

Using the Taylor series of natural logarithm, this can be
approximated by

$$
\begin{aligned}
& D_{K L}\left(P_{\boldsymbol{z}}^{\mathrm{v}} \| P_{\boldsymbol{z}}\right) \approx \int(p(\boldsymbol{z} \mid \boldsymbol{\theta})+\Delta p) \times \\
& \left(\frac{\Delta p}{p(\boldsymbol{z} \mid \boldsymbol{\theta})}-\frac{(\Delta p)^{2}}{2(p(\boldsymbol{z} \mid \boldsymbol{\theta}))^{2}}\right) d \boldsymbol{z}=\int \Delta p d \boldsymbol{z}+ \\
& \frac{1}{2} \int\left(\frac{\Delta p}{p(\boldsymbol{z} \mid \boldsymbol{\theta})}\right)^{2} p(\boldsymbol{z} \mid \boldsymbol{\theta}) d \boldsymbol{z}-\int \frac{(\Delta p)^{3}}{2 p(\boldsymbol{z} \mid \boldsymbol{\theta})^{2}} d \boldsymbol{z}
\end{aligned}
$$

where the first term using the definition of Δp is equal to zero and the third $\mathcal{O}\left(\Delta \boldsymbol{\theta}^{3}\right) \rightarrow 0$.

By substituting Δp and rewriting vector $\boldsymbol{\theta}$ as a discrete sum, the term

$$
\frac{\Delta p}{p(\boldsymbol{z} \mid \boldsymbol{\theta})} \approx \sum_{i} \frac{\partial \log p(\boldsymbol{z} \mid \boldsymbol{\theta})}{\partial \boldsymbol{\theta}_{i}} \Delta \boldsymbol{\theta}_{i}
$$

Using this approximation, the final form of (7) can be obtained as

$$
\begin{aligned}
& \mathcal{R}_{o p t}(b, P)=\underset{\mathcal{R}(b, P)}{\arg \min } D_{K L}\left(P_{\boldsymbol{z}}^{\mathbf{v}} \| P_{\boldsymbol{z}}\right) \\
& \approx \underset{\mathcal{R}(b, P)}{\arg \min } \sum_{m, n} \mathcal{I}_{m, n} \Delta \boldsymbol{\theta}_{m} \Delta \boldsymbol{\theta}_{n} \approx \underset{\mathcal{R}(b, P)}{\arg \min } \Delta \boldsymbol{\theta}^{T} \mathcal{I} \Delta \boldsymbol{\theta}
\end{aligned}
$$

where $\mathcal{I}=\mathbb{E}_{P_{z}}\left[\boldsymbol{g}(\boldsymbol{\theta}) \boldsymbol{g}(\boldsymbol{\theta})^{T}\right]$ is a Fisher information matrix and $\boldsymbol{g}(\boldsymbol{\theta})=\frac{\partial \log p(\boldsymbol{z} \mid \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}$ is a Fisher score with respect to $\boldsymbol{\theta}$.

3. Practical Fisher kernel for DNNs

Using the chain rule for a DNN layer $\left(\tilde{z}_{i}^{j}=\boldsymbol{\theta}^{T} \boldsymbol{z}_{i}^{j}=\right.$ $\boldsymbol{\theta}^{T} \sigma\left(\tilde{\boldsymbol{z}}_{i}^{j-1}\right)$) with $\sigma(\cdot)$ nonlinearity, Jacobian of interest can be simplified as follows

$$
\frac{\partial L\left(\boldsymbol{y}_{i}, \hat{\boldsymbol{y}}_{i}\right)}{\partial \boldsymbol{\theta}}=\frac{\partial L\left(\boldsymbol{y}_{i}, \hat{\boldsymbol{y}}_{i}\right)}{\partial \tilde{\boldsymbol{z}}_{i}} \frac{\partial \tilde{\boldsymbol{z}}_{i}}{\partial \boldsymbol{\theta}}=\frac{\partial L\left(\boldsymbol{y}_{i}, \hat{\boldsymbol{y}}_{i}\right)}{\partial \tilde{\boldsymbol{z}}_{i}} \boldsymbol{z}_{i}^{T}=\boldsymbol{g}_{i} \boldsymbol{z}_{i}^{T},
$$

where $\boldsymbol{\theta} \in \mathbb{R}^{L \times L}, \boldsymbol{z}_{i} \in \mathbb{R}^{L \times 1}$, and $\boldsymbol{g}_{i} \in \mathbb{R}^{L \times 1}$.
Then, approximation of FK in (11) for $\boldsymbol{g}_{i}(\boldsymbol{\theta})=$ $\operatorname{vec}\left(\partial L\left(\boldsymbol{y}_{i}, \hat{\boldsymbol{y}}_{i}\right) / \partial \boldsymbol{\theta}\right) \in \mathbb{R}^{L^{2} \times 1}$ can be derived as
$R_{z, g}\left(\boldsymbol{z}_{m}, \boldsymbol{z}_{n}\right)=\boldsymbol{g}_{m}(\boldsymbol{\theta})^{T} \mathcal{I}^{-1} \boldsymbol{g}_{n}(\boldsymbol{\theta}) \stackrel{\text { PFK }}{\approx} \boldsymbol{g}_{m}(\boldsymbol{\theta})^{T} \boldsymbol{g}_{n}(\boldsymbol{\theta})=$
$\operatorname{vec}\left(\frac{\partial L\left(\boldsymbol{y}_{m}, \hat{\boldsymbol{y}}_{m}\right)}{\partial \tilde{\boldsymbol{z}}_{m}} \boldsymbol{z}_{m}^{T}\right)^{T} \operatorname{vec}\left(\frac{\partial L\left(\boldsymbol{y}_{n}, \hat{\boldsymbol{y}}_{n}\right)}{\partial \tilde{\boldsymbol{z}}_{n}} \boldsymbol{z}_{n}^{T}\right)=$
$\operatorname{vec}\left(\boldsymbol{g}_{m} \boldsymbol{z}_{m}^{T}\right)^{T} \operatorname{vec}\left(\boldsymbol{g}_{n} \boldsymbol{z}_{n}^{T}\right)=\left[g_{m}^{1} \boldsymbol{z}_{m}, g_{m}^{2} \boldsymbol{z}_{m}, \ldots, g_{m}^{L} \boldsymbol{z}_{m}\right]^{T} \times$
$\left[g_{n}^{1} \boldsymbol{z}_{n}, g_{n}^{2} \boldsymbol{z}_{n}, \ldots, g_{n}^{L} \boldsymbol{z}_{n}\right]=\boldsymbol{z}_{m}^{T} \boldsymbol{z}_{n} \sum_{l}^{L} g_{m}^{l} g_{n}^{l}=\boldsymbol{z}_{m}^{T} \boldsymbol{z}_{n} \boldsymbol{g}_{m}^{T} \boldsymbol{g}_{n}$.

References

[1] Alessandro Achille and Stefano Soatto. Emergence of invariance and disentanglement in deep representations. Journal of Machine Learning Research, pages 1947-1980, 2018.

