
DualSDF: Semantic Shape Manipulation using a Two-Level Representation
– Supplementary Material –

Figure 1: Learning with box primitives. Our technique
is directly applicable for geometric shapes which can be
represented with SDFs. Above we demonstrate coarse shape
reconstructions learned by our model with box primitives.

1. DualSDF with Box Primitives
In our work, we use sphere primitives for our coarse rep-

resentation. In the main paper, we also show reconstruction
results obtained with capsule primitives. In Figure 1, we
demonstrate that box primitives can be utilized in our frame-
work as well. In fact, our framework is very flexible in terms
of primitive choice. Any primitive that can be represented
with signed distance function can be incorporated into the
coarse representation.

2. Effect of Latent Code Regularization on
Shape Manipulation

Figure 3 shows the effect of latent code regularization
term LREG on the shape manipulation process. Empirically, a
latent code with high likelihood under the prior p(z) usually
decodes to more plausible shapes. LREG keeps the latent code
from deviating too far from the prior during the manipula-
tion process, improving the quality of the result shape. From

FC
FC

FC
FC FC

FC FC
FC

C
o

n
ca

t

5
1

2

5
1

2

5
1

2

5
1

2

5
1

2

5
1

2

5
1

2

1
2

8
+3

 (
1

2
8

)

3
8

1
 (

3
8

4
)

1
 (

2
5

6
×

4
)

Figure 2: Network structure. The different settings used for
the primitive-based representation are marked by parenthe-
sis.

a user’s perspective, the regularization term guide the user
input towards more semantically meaningful shapes by mov-
ing the unconstrained primitives to the correct places and
guarding the user input against unreasonable configurations.

3. Analysis of Running Time
As mentioned in the main paper, our shape manipulation

framework is able to run at real time. Here we provide a
more comprehensive analysis on the running time of our
model to further back up our claim. All of the benchmarks
are implemented with PyTorch and run on a single GTX
1080ti GPU. We assume a single-user scenario, where the
batch size is only one.

For the primitive-based representation section, it takes
an average of 0.66ms to obtain the primitive attributes from
latent code, and it takes an average of 2.74ms to perform
one gradient descent step (including forward and backward)
to update the latent code and to obtain the attributes of the
updated shape, after receiving the user input. Even with
our less-that-optimal implementation, this is already fast
enough to provide the user with real-time feedback. Once
the primitive attributes are obtained, the shape can then be
rendered conveniently and rapidly with real time rendering
engines and hardware acceleration.

For the high-resolution representation, assuming we are
rendering the SDF with ray-marching method, there are
two parameters that determine the render quality and speed:
image resolution and number of ray-marching steps. The

1

W
ith

C
od

e
R

eg
ul

ar
iz

at
io

n
W

ith
ou

tC
od

e
R

eg
ul

ar
iz

at
io

n

Figure 3: The effect of the latent code regularization term in the shape manipulation objective on the quality of the resulting
shape. Here we move the blue sphere downwards in an attempt to make the legs of the chair longer. From left to right we show
the original shape (marked in red boxes) and the intermediate shapes during the manipulation process.

effects of the two parameters on image quality and rendering
time are presented in Figure 4. All the renderings shown in
the main paper are rendered with 64 iterations at a resolution
of 480×480. Although at full resolution and highest quality,
the rendering of high-resolution representation is not as fast
as the primitive-based representation, a reasonable trade-off
between time and quality can be obtained. During interactive
manipulation, we can present the user with reduced resolu-
tion rendering at a reduced rate, in addition to the real-time
rendering of the primitive-based representation, and render
the full resolution result only when needed.

4. Detailed Experimental Setting

We use a 128-dimensional latent code zj throughout the
experiments. For the high-resolution SDF representation, we
use a 8-layer MLP with one cross-connection. The 131-dim
input is the concatenation of the 128-dim latent code zj and
the 3D coordinate p. The output is the predicted SDF value
at this 3D coordinate. For the primitive-based representation,
we use the same network architecture with zj as the only
input, and the attributes (center coordinates and log radii,
denoted by αααj in the main paper) of 256 spheres as output.

The networks are shown in Figure 2. Weight normalization
is used on all the fully connected layers. We use ReLU
activation on all but the last fully connected layers. We use
dropout with a probability of 0.2 on the output of all but
the last fully connected layers, only in the high-resolution
network gθ.

For all the experiments, we use Adam optimizer with
β1 = 0.9 and β2 = 0.999. The learning rates are 5e-9 for
θ, φ and 1e-8 for µµµj ,σσσj . Each batch consists of 64 shapes;
for each shape we sample 2048 SDF values for the high-res
representation and 1024 for the primitive-based represen-
tation. We train the model for 2800 epochs and drop the
learning rate by 50% after every 700 epochs. We empirically
set λ1 = λ2 = 1e5. Their values affect the trade-off between
latent space compactness and reconstruction quality due to
DKL.

5. SDF Losses

We use truncated SDF loss on both coarse and fine shape
representations during training and shape encoding. This
has been shown beneficial in DeepSDF. For high resolu-
tion representation, we truncate the SDF on both inside and

Output
#Steps 16 24 32 40 48 56 64
Resolution 480× 480 480× 480 480× 480 480× 480 480× 480 480× 480 480× 480
Time (s) 2.35 3.36 4.36 5.37 6.39 7.40 8.41

Output
#Steps 64 64 64 64 64 64 64
Resolution 80× 80 160× 160 240× 240 320× 320 400× 400 480× 480 560× 560
Time (s) 0.26 0.95 2.11 3.73 5.85 8.44 11.49

Figure 4: Trade-off between rendering quality and speed on the fine-scale representation. Higher resolution and larger number
of ray-marching iterations lead to better image quality, at the cost of longer running time. Our model is capable of adjusting
the trade-off on the fly to adjust to different scenarios. For example, we can render shapes in lower quality during interactive
manipulation, and render a high quality result once the manipulation is done.

outside:

Lfine
SDF (d, s) =


max(d,−δ) + δ s < −δ,
|d− s| −δ ≤ s ≤ δ,
δ −min(d, δ) s > δ.

(1)

For primitive-based representation, we only truncate the
SDF inside the shape to zero, as the SDF outside the shape
is guaranteed to be valid (metric):

Lcoarse
SDF (d, s) =

{
max(d, 0) s < 0,

|d− s| s ≥ 0.
(2)

6. Additional Results
In Figure 5, we show additional shape manipulation re-

sults on Chair and Airplane collections. Please refer to the
accompanying video for full sequences on additional shapes.
Note that while these results are obtained using simple edit-
ing operations (such as dragging a single primitive along one
axis), more complicated operations on multiple primitives
can be achieved in a similar manner (as we show in the main
paper).

We demonstrate shape interpolation results obtained in
two ways. Figure 6 shows results on linearly interpolating
the latent code, while Figure 7 illustrates a novel way of
partially interpolating between two shapes by optimizing

the primitive parameters, as we propose in the main paper.
The latter method allows selectively interpolating certain
characteristics of the shapes, such as the outline of the shape.

As illustrated in Figure 7, in the top two rows, we per-
form optimization on the primitive attributes to encourage
the coarse representation of the left chair to match the coarse
representation of the right chair. This effectively interpolates
the outlines of the chairs while keeping the fine details on
the left chair intact. This cannot be achieved with standard
interpolation (Figure 6, top two rows). Similarly, in the
bottom two rows, we use L1 loss to encourage the heights
(y-coordinates) of the primitives on the left chair to match
the heights of the corresponding primitives on the right chair,
while allowing other attributes to change freely during the
optimization. Note that finding the correspondences of prim-
itives between two shapes is trivial since each primitive
generally stays at the same position across different shapes
within a single class, as we illustrate in the main paper.

Figure 5: Manipulating shapes (on the left) by dragging a single primitive (colored in blue) along a specified direction (red
arrow on the left). Please refer to the accompanying video for full manipulated sequences.

Figure 6: Linear interpolation in the latent space between pairs of shapes. The original shape pairs are marked with red boxes
while the shapes in between are generated from interpolated latent code. Accompanying each shape is its corresponding
primitive-based representation.

Figure 7: Selective primitive-space interpolation on the same pairs of shapes shown in Figure 6. This type of interpolation
supports selectively interpolating some of the attributes. For the first two rows, the outlines of the chairs are interpolated by
gradually matching the coarse representation of the left chair to the right chair. Note how the fine details of the left chair are
preserved. Similarly, for the bottom two rows, the heights of the primitives of the left chair are gradually matched to the right
chair, while everything else is allowed to change freely. Many key features of the left chair are preserved in this process.

