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1. Network Design

Unlike video SR methods [6, 9] that accept input frames
recurrently, a set of input frames (I lt and I lt+1) are fed into a
network simultaneously for their ST-SR outputs (e.g., Isrt+n)
in STAR as with [3, 7], as illustrated in Figure 3. The
next inputs (I lt+1 and I lt+2) are then fed into the network
with no memory given by the last cycle that accepts I lt and
I lt+1. This current implementation can be extended to the
one with recurrent input frames.

2. Model Improvement

Multi-frame. STAR can be improved by accepting more
input frames as video SR methods (e.g., RBPN) do. STAR
uses RBPN as NetS , so that NetS can be easily extended
to accept a multi-frame input.
Interpolation Rate. STAR can interpolate one frame at any
moment, t + n(n ∈ [0, 1]). Each STAR is trained for a
specific n. For example, for T-SR by factor of 4, we have
two options. (1) Three STARs are trained for n = 1
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independently and (2) STAR with n = 1
2 is trained and used

iteratively so that n = 1
4 is generated from a pair of n = 0

and n = 1
2 . Note that we can also extend STAR so that it

is trained for any n by following standard practice in frame
interpolation literature. In this paper, we did not evaluate
such regimes, to be consistent with previous work [1, 2, 8].

3. Details on Flow Computation

Flow Refinement Explanation. Ft→t+n +Ft+n→t+1 is el-
ementwise sum of the two flow fields. The magnitude of
this half-way flows is generally lower, which brings them to
the same average scale as the t → t + 1 flow. In practice,
we find that this operation has a localized smoothing effect,
improving the interpolation, as seen in Figure 5.
The computation of Ft→t+n. During training, we have
access to the ground truth of interpolated frames (I lt+n).
So that, Ft→t+n is the function of optical flow computa-
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tion which calculated flows from an input frame at t to this
ground truth (i.e., from I lt to I lt+n).

4. Additional Experimental Results
4.1. The Upper-Bound Performance of Flow Refine-

ment Module

Further analysis of the Flow Refinement (FR) module is
performed. Our STAR used bidirectional dense motion flow
maps, Ft→t+1 and Ft+1→t that are computed only by I lt and
I lt+1 as explained in the main manuscript. However, the
flow noise exists when calculating large motions objects.

In order to further investigate (1) the bad impact of noisy
flows on ST-SR in the test stage and (2) the effectiveness of
the FR module for suppressing this bad impact, we compare
the ST-SR performances in different conditions as follows.

The bad impact of the noisy flows can be confirmed if
we have the ground-truth of the flow map for comparison.
While this ground-truth is not available, we propose to use
flow maps computed by GT in-between frames of I lt and
I lt+1. We call this flow GT flow. Remember that the GT flow
is used in our proposed STAR for training the FR module
using Lflow (Eq. (15) in the main manuscript). The results
have been proven in our experiments. On the other hand, the
GT flow is unavailable in the test stage because the GT in-
between frame is what STAR tries to predict. However, for
further analysis, we can also assume that the upper-bound
performance of the FR module is by giving access to GT
flow also during testing. We show the upper-bound perfor-
mance of our FR module in Table 1, specifically in the 4th

rows.
In the 1st and 2nd rows, we compare our STAR w/ and

w/o FR module. We can see that the FR module improves
the performance by 0.11dB and 0.09dB on Isrt and Isrt+ , re-
spectively. The 3rd and 4th rows show the results obtained
by the GT flow. We can also see that FR is able to improve
the performance even using GT flow, but not substantial:
0.035dB and 0.027dB in Isrt and Isrt+, respectively.

The use of GT flow proves an improvement by compar-
ing the 1st and 3rd rows: 0.055dB and 0.111dB in Isrt and
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Isrt Isrt+
FR1 GT Flow2 PSNR SSIM PSNR SSIM

- - 32.257 0.937 30.617 0.927
X - 32.349 0.938 30.704 0.928
- X 32.312 0.938 30.728 0.928
X X 32.347 0.938 30.755 0.928

Table 1. Analysis on FR module using STAR-ST with RBPN
(Lr). The first column (FR1) indicates whether FR is used or not.
The second column (GT flow2) indicates whether GT flow is used
during testing or not.

Isrt+, respectively. The 2rd and 3th rows show an interest-
ing comparison where FR has comparable performance to
the one w/o FR but using GT flow. This shows that FR is
able to generate semantic contents closely enough to the GT
flow. Finally, we can see that the 2nd and 4th rows shows a
small margin. This means that FR is able to improve the
performance near to the upper-bound performance.

5. Additional Visual Results

5.1. Visual Results on ST-SR

More visual results on ST-SR are shown in Fig. 1. Here
we can see that our STAR outperforms the other methods.
In the first row, we can see that our STAR is able to predict
the motion of the right arm without losing the pinkish tex-
ture on it, which is indicated by the red arrow in the images.
In the second row, the main difference is that the drum stick
has a clearer texture compared to the other methods. In the
third row, our STAR is able to interpolate the motion of the
horse’s leg better than the other methods. In the fourth and
fifth rows, we can see that the structure of the hoop is clearer
in our STAR’s results. Finally, in the last row, we can see
that STAR has a better prediction on the ball motion.

5.2. Visual Results on T-SR

More visual results of T-SR are shown in Fig. 2. Mostly
same as in ST-SR results, in the T-SR results, our STAR is
able to construct better motion and texture compared to the
other methods.

5.3. Visual Results on S-SR

More visual results of S-SR are shown in Fig. 3. Here
also, our STAR shows sharper and better detail compared
to the other methods, as shown by the red arrows.

5.4. Video Results

Here we show some samples of video frames as in Fig. 4.
The full video results of STSR (4x2r) from the HD video
dataset are available in the following link.

5.5. Failure cases

The performance improvement of STARnet builds upon
the assumption that both tasks are mutually beneficial to
each other. Here we show some results where S-SR task
produce artifacts, then T-SR task also suffer from it as in
Fig. 5.
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(a) (b) (c) (d) (e) (f)
TOFlow [11]→RBPN [5] DAIN [1]→RBPN [5] RBPN [5]→TOFlow [11] RBPN [5]→DAIN [1] STAR-ST-FR GT

Figure 1. Additional visual results of ST-SR (Isrt+ ) on UCF101 [10]. Red arrows here and in the other figures indicate the highlighted area.



(a) (b) (c) (d)
TOFlow [11] DAIN [1] STAR-T-FR GT

Figure 2. Additional visual results of T-SR on the original resolution of UCF101 [10].



(a) (b) (c) (d)
DBPN [4] RBPN [5] STAR-S-FR GT

Figure 3. Additional visual results of S-SR on UCF101 [10].

Figure 4. Sample of video results. Order are from left to right.



Figure 5. Samples of failure cases. Order are from left to right and top to down.


