A. Appendix
A.1. Implementation: Object detection backbones

The R50-dilated-C5 and R50-C4 backbones are similar
to those available in Detectron2 [60]: (i) R50-dilated-
C5: the backbone includes the ResNet convs stage with a
dilation of 2 and stride 1, followed by a 3x3 convolution
(with BN) that reduces dimension to 512. The box predic-
tion head consists of two hidden fully-connected layers. (ii)
R50-C4: the backbone ends with the convy stage, and the
box prediction head consists of the convs stage (including
global pooling) followed by a BN layer.

A.2. Implementation: COCO keypoint detection

We use Mask R-CNN (keypoint version) with R50-FPN,
implemented in [60], fine-tuned on COCO train2017
and evaluated on va12017. The schedule is 2 x.

A.3. Implementation: COCO dense pose estimation

We use DensePose R-CNN [1] with R50-FPN, imple-
mented in [60], fine-tuned on COCO train2017 and
evaluated on val2017. The schedule is “s1x”.

A.4. Implementation: LVIS instance segmentation

We use Mask R-CNN with R50-FPN, fine-tuned in LVIS
[27]train_v0.5 and evaluated in val_v0 . 5. We follow
the baseline in [27] (arXiv v3 Appendix B).

LVIS is a new dataset and model designs on it are to be
explored. The following table includes the relevant abla-
tions (all are averages of 5 trials):

1x schedule 2x schedule
pre-train BN | AP™ APIE APIK| AP™K APZE APIK
super. IN-IM frozen | 24.1 373 254 | 244 378 258
super. IN-IM tuned | 23.5 36.6 248 | 232 360 244
MoCo IN-IM tuned | 232 36.0 24.7 | 24.1 374 255
MoCo IG-1B tuned | 243 374 259 | 249 382 264

A supervised pre-training baseline, end-to-end tuned but
with BN frozen, has 24.4 AP™. But tuning BN in this
baseline leads to worse results and overfitting (this is unlike
on COCO/VOC where tuning BN gives better or compara-
ble accuracy). MoCo has 24.1 AP™ with IN-1M and 24.9
AP™ with IG-1B, both outperforming the supervised pre-
training counterpart under the same tunable BN setting. Un-
der the best individual settings, MoCo can still outperform
the supervised pre-training case (24.9 vs. 24.4, as reported
in Table 6 in Sec 4.2).

A.5. Implementation: Semantic segmentation

We use an FCN-based [43] structure. The backbone con-
sists of the convolutional layers in R50, and the 3x3 con-
volutions in convy blocks have dilation 2 and stride 1. This
is followed by two extra 3 x3 convolutions of 256 channels,

with BN and ReLU, and then a 1x1 convolution for per-
pixel classification. The total stride is 16 (FCN-16s [43]).
We set dilation = 6 in the two extra 3x3 convolutions, fol-
lowing the large field-of-view design in [6].

Training is with random scaling (by a ratio in [0.5, 2.0]),
cropping, and horizontal flipping. The crop size is 513 on
VOC and 769 on Cityscapes [6]. Inference is performed
on the original image size. We train with mini-batch size
16 and weight decay 0.0001. Learning rate is 0.003 on
VOC and is 0.01 on Cityscapes (multiplied by 0.1 at 70-
th and 90-th percentile of training). For VOC, we train on
the train_aug2012 set (augmented by [30], 10582 im-
ages) for 30k iterations, and evaluate on val2012. For
Cityscapes, we train on the t rain_fine set (2975 images)
for 90k iterations, and evaluate on the val set. Results are
reported as averages over 5 trials.

A.6. iNaturalist fine-grained classification

In addition to the detection/segmentation experiments
in the main paper, we study fine-grained classification on
the iNaturalist 2018 dataset [57]. We fine-tune the pre-
trained models end-to-end on the train set (~437k im-
ages, 8142 classes) and evaluate on the val set. Training
follows the typical ResNet implementation in PyTorch with
100 epochs. Fine-tuning has a learning rate of 0.025 (vs.
0.1 from scratch) decreased by 10 at the 70-th and 90-th
percentile of training. The following is the R50 result:

pre-train ‘ rand init. super.n.im MoConogy MoCogg s

accuracy (%) ‘ 61.8 66.1 65.6 65.8

MoCo is ~4% better than training from random initializa-
tion, and is closely comparable with its ImageNet super-
vised counterpart. This again shows that MoCo unsuper-
vised pre-training is competitive.

A.7. Fine-tuning in ImageNet

Linear classification on frozen features (Sec. 4.1) is a
common protocol of evaluating unsupervised pre-training
methods. However, in practice, it is more common to fine-
tune the features end-to-end in a downstream task. For
completeness, the following table reports end-to-end fine-
tuning results for the 1000-class ImageNet classification,
compared with training from scratch (fine-tuning uses an
initial learning rate of 0.03, vs. 0.1 from scratch):

pre-train MoCoj.1

accuracy (%) | 76.5 71.3

‘ random init.

As here ImageNet is the downstream task, the case of MoCo
pre-trained on IN-1M does not represent a real scenario
(for reference, we report that its accuracy is 77.0% after
fine-tuning). But unsupervised pre-training in the separate,
unlabeled dataset of IG-1B represents a typical scenario: in
this case, MoCo improves by 0.8%.

pre-train APPP AP AP® APk APTK APIK APPP AP AP® APk APTK APIK
random init. 36.7 56.7 40.0 33.7 53.8 35.9 414 61.9 45.1 37.6 59.1 40.3
super. IN-1M | 40.6 61.3 44.4 36.8 58.1 39.5 41.9 62.5 45.6 38.0 59.6 40.8
MoCo IN-1M | 40.8 (+02) 61.6 (+03) 44.7 (+03)| 36.9 (+-0.1) 58.4(+03) 39.7(+02) 42.3(+04) 62.7(+0.2) 46.2(+0.6)| 38.3 (+0.3) 60.1(+0.5 41.2 (404
MoCo IG-1B | 41.1 (+0.5 61.8(+0.5 45.1(+0.7)| 37.4(+0.6) 59.1 (+1.0) 40.2 (+0.7) 42.8 (+0.9) 63.2(+0.7) 47.0(+1.4)| 38.7 (+0.7) 60.5 (+0.9) 41.3 (+0.5)

(a) Mask R-CNN, R50-FPN, 2x schedule

A.8. COCO longer fine-tuning

In Table 5 we reported results of the 1x (~12 epochs)
and 2x schedules on COCO. These schedules were inher-
ited from the original Mask R-CNN paper [32], which could
be suboptimal given later advance in the field. In Table A.1,
we supplement the results of a 6x schedule (~72 epochs)
[31] and compare with those of the 2 x schedule.

We observe: (i) fine-tuning with ImageNet-supervised
pre-training still has improvements (41.9 APP™): (ii) train-
ing from scratch largely catches up (41.4 AP®); (iii) the
MoCo counterparts improve further (e.g., to 42.8 AP") and
have larger gaps (e.g., +0.9 AP with 6x, vs. +0.5 AP
with 2x). Table A.1 and Table 5 suggest that the MoCo
pre-trained features can have larger advantages than the
ImageNet-supervised features when fine-tuning longer.

A.9. Ablation on Shuffling BN

Figure A.1 provides the training curves of MoCo with
or without shuffling BN: removing shuffling BN shows ob-
vious overfitting to the pretext task: training accuracy of
the pretext task (dash curve) quickly increases to >99.9%,
and the kNN-based validation classification accuracy (solid
curve) drops soon. This is observed for both the MoCo and
end-to-end variants; the memory bank variant implicitly has
different statistics for ¢ and &, so avoids this issue.

These experiments suggest that without shuffling BN,
the sub-batch statistics can serve as a ‘“signature” to tell
which sub-batch the positive key is in. Shuffling BN can
remove this signature and avoid such cheating.

100

accuracy (%)

——MoCo w/ ShuffleBN
——MoCo w/o ShuffleBN
0 L 1 L

0 20 40 60 80
epochs

Figure A.1. Ablation of Shuffling BN. Dash: training curve of
the pretext task, plotted as the accuracy of (K+1)-way dictionary
lookup. Solid: validation curve of a kNN-based monitor [61] (not
a linear classifier) on ImageNet classification accuracy. This plot
shows the first 80 epochs of training: training longer without shuf-
fling BN overfits more.

(b) Mask R-CNN, R50-FPN, 6 x schedule
Table A.1. Object detection and instance segmentation fine-tuned on COCO: 2x vs. 6x schedule. In the brackets are the gaps to the
ImageNet supervised pre-training counterpart. In green are the gaps of at least +0.5 point.

