
A. Appendix
A.1. Implementation: Object detection backbones

The R50-dilated-C5 and R50-C4 backbones are similar
to those available in Detectron2 [60]: (i) R50-dilated-
C5: the backbone includes the ResNet conv5 stage with a
dilation of 2 and stride 1, followed by a 3×3 convolution
(with BN) that reduces dimension to 512. The box predic-
tion head consists of two hidden fully-connected layers. (ii)
R50-C4: the backbone ends with the conv4 stage, and the
box prediction head consists of the conv5 stage (including
global pooling) followed by a BN layer.

A.2. Implementation: COCO keypoint detection

We use Mask R-CNN (keypoint version) with R50-FPN,
implemented in [60], fine-tuned on COCO train2017
and evaluated on val2017. The schedule is 2×.

A.3. Implementation: COCO dense pose estimation

We use DensePose R-CNN [1] with R50-FPN, imple-
mented in [60], fine-tuned on COCO train2017 and
evaluated on val2017. The schedule is “s1×”.

A.4. Implementation: LVIS instance segmentation

We use Mask R-CNN with R50-FPN, fine-tuned in LVIS
[27] train v0.5 and evaluated in val v0.5. We follow
the baseline in [27] (arXiv v3 Appendix B).

LVIS is a new dataset and model designs on it are to be
explored. The following table includes the relevant abla-
tions (all are averages of 5 trials):

1× schedule 2× schedule
pre-train BN APmk APmk

50 APmk
75 APmk APmk

50 APmk
75

super. IN-1M frozen 24.1 37.3 25.4 24.4 37.8 25.8
super. IN-1M tuned 23.5 36.6 24.8 23.2 36.0 24.4

MoCo IN-1M tuned 23.2 36.0 24.7 24.1 37.4 25.5
MoCo IG-1B tuned 24.3 37.4 25.9 24.9 38.2 26.4

A supervised pre-training baseline, end-to-end tuned but
with BN frozen, has 24.4 APmk. But tuning BN in this
baseline leads to worse results and overfitting (this is unlike
on COCO/VOC where tuning BN gives better or compara-
ble accuracy). MoCo has 24.1 APmk with IN-1M and 24.9
APmk with IG-1B, both outperforming the supervised pre-
training counterpart under the same tunable BN setting. Un-
der the best individual settings, MoCo can still outperform
the supervised pre-training case (24.9 vs. 24.4, as reported
in Table 6 in Sec 4.2).

A.5. Implementation: Semantic segmentation

We use an FCN-based [43] structure. The backbone con-
sists of the convolutional layers in R50, and the 3×3 con-
volutions in conv5 blocks have dilation 2 and stride 1. This
is followed by two extra 3×3 convolutions of 256 channels,

with BN and ReLU, and then a 1×1 convolution for per-
pixel classification. The total stride is 16 (FCN-16s [43]).
We set dilation = 6 in the two extra 3×3 convolutions, fol-
lowing the large field-of-view design in [6].

Training is with random scaling (by a ratio in [0.5, 2.0]),
cropping, and horizontal flipping. The crop size is 513 on
VOC and 769 on Cityscapes [6]. Inference is performed
on the original image size. We train with mini-batch size
16 and weight decay 0.0001. Learning rate is 0.003 on
VOC and is 0.01 on Cityscapes (multiplied by 0.1 at 70-
th and 90-th percentile of training). For VOC, we train on
the train aug2012 set (augmented by [30], 10582 im-
ages) for 30k iterations, and evaluate on val2012. For
Cityscapes, we train on the train fine set (2975 images)
for 90k iterations, and evaluate on the val set. Results are
reported as averages over 5 trials.

A.6. iNaturalist fine-grained classification

In addition to the detection/segmentation experiments
in the main paper, we study fine-grained classification on
the iNaturalist 2018 dataset [57]. We fine-tune the pre-
trained models end-to-end on the train set (∼437k im-
ages, 8142 classes) and evaluate on the val set. Training
follows the typical ResNet implementation in PyTorch with
100 epochs. Fine-tuning has a learning rate of 0.025 (vs.
0.1 from scratch) decreased by 10 at the 70-th and 90-th
percentile of training. The following is the R50 result:

pre-train rand init. super.IN-1M MoCoIN-1M MoCoIG-1B

accuracy (%) 61.8 66.1 65.6 65.8

MoCo is ∼4% better than training from random initializa-
tion, and is closely comparable with its ImageNet super-
vised counterpart. This again shows that MoCo unsuper-
vised pre-training is competitive.

A.7. Fine-tuning in ImageNet

Linear classification on frozen features (Sec. 4.1) is a
common protocol of evaluating unsupervised pre-training
methods. However, in practice, it is more common to fine-
tune the features end-to-end in a downstream task. For
completeness, the following table reports end-to-end fine-
tuning results for the 1000-class ImageNet classification,
compared with training from scratch (fine-tuning uses an
initial learning rate of 0.03, vs. 0.1 from scratch):

pre-train random init. MoCoIG-1B

accuracy (%) 76.5 77.3

As here ImageNet is the downstream task, the case of MoCo
pre-trained on IN-1M does not represent a real scenario
(for reference, we report that its accuracy is 77.0% after
fine-tuning). But unsupervised pre-training in the separate,
unlabeled dataset of IG-1B represents a typical scenario: in
this case, MoCo improves by 0.8%.

pre-train APbb APbb
50 APbb

75 APmk APmk
50 APmk

75
random init. 36.7 56.7 40.0 33.7 53.8 35.9
super. IN-1M 40.6 61.3 44.4 36.8 58.1 39.5

MoCo IN-1M 40.8 (+0.2) 61.6 (+0.3) 44.7 (+0.3) 36.9 (+0.1) 58.4 (+0.3) 39.7 (+0.2)

MoCo IG-1B 41.1 (+0.5) 61.8 (+0.5) 45.1 (+0.7) 37.4 (+0.6) 59.1 (+1.0) 40.2 (+0.7)

(a) Mask R-CNN, R50-FPN, 2× schedule

APbb APbb
50 APbb

75 APmk APmk
50 APmk

75
41.4 61.9 45.1 37.6 59.1 40.3
41.9 62.5 45.6 38.0 59.6 40.8
42.3 (+0.4) 62.7 (+0.2) 46.2 (+0.6) 38.3 (+0.3) 60.1 (+0.5) 41.2 (+0.4)

42.8 (+0.9) 63.2 (+0.7) 47.0 (+1.4) 38.7 (+0.7) 60.5 (+0.9) 41.3 (+0.5)

(b) Mask R-CNN, R50-FPN, 6× schedule

Table A.1. Object detection and instance segmentation fine-tuned on COCO: 2× vs. 6× schedule. In the brackets are the gaps to the
ImageNet supervised pre-training counterpart. In green are the gaps of at least +0.5 point.

A.8. COCO longer fine-tuning

In Table 5 we reported results of the 1× (∼12 epochs)
and 2× schedules on COCO. These schedules were inher-
ited from the original Mask R-CNN paper [32], which could
be suboptimal given later advance in the field. In Table A.1,
we supplement the results of a 6× schedule (∼72 epochs)
[31] and compare with those of the 2× schedule.

We observe: (i) fine-tuning with ImageNet-supervised
pre-training still has improvements (41.9 APbb); (ii) train-
ing from scratch largely catches up (41.4 APbb); (iii) the
MoCo counterparts improve further (e.g., to 42.8 APbb) and
have larger gaps (e.g., +0.9 APbb with 6×, vs. +0.5 APbb

with 2×). Table A.1 and Table 5 suggest that the MoCo
pre-trained features can have larger advantages than the
ImageNet-supervised features when fine-tuning longer.

A.9. Ablation on Shuffling BN

Figure A.1 provides the training curves of MoCo with
or without shuffling BN: removing shuffling BN shows ob-
vious overfitting to the pretext task: training accuracy of
the pretext task (dash curve) quickly increases to >99.9%,
and the kNN-based validation classification accuracy (solid
curve) drops soon. This is observed for both the MoCo and
end-to-end variants; the memory bank variant implicitly has
different statistics for q and k, so avoids this issue.

These experiments suggest that without shuffling BN,
the sub-batch statistics can serve as a “signature” to tell
which sub-batch the positive key is in. Shuffling BN can
remove this signature and avoid such cheating.

0 20 40 60 80
epochs

0

50

100

ac
cu

ra
cy

 (%
)

MoCo w/ ShuffleBN
MoCo w/o ShuffleBN

Figure A.1. Ablation of Shuffling BN. Dash: training curve of
the pretext task, plotted as the accuracy of (K+1)-way dictionary
lookup. Solid: validation curve of a kNN-based monitor [61] (not
a linear classifier) on ImageNet classification accuracy. This plot
shows the first 80 epochs of training: training longer without shuf-
fling BN overfits more.

