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A. Baseline implementation details

In this section, we provide more implementation details

for autoencoder, egomotion and shapecode baselines.

Autoencoder [2] is trained to reconstruct an input image

x, with dimension 224×224×3. We adopt the autoencoder

architecture design of VGG16 from [3]. However, the archi-

tecture in [3] is similar to Unet [5], which has intermediate

connections between different intermediate feature outputs.

We remove those intermediate connections to resemble au-

toencoder, whose latent feature has 4096 dimension. L2

loss is used to measure the difference between ground truth

y = x and the reconstructed image ŷ, which can be formu-

lated as.

L = ||ŷ − y||2. (1)

Egomotion [1] predicts the camera motion between 2 im-

ages. Assuming only V viewpoints exist in the dataset, the

model will output V − 1 probabilities, corresponding to the

V − 1 viewpoints differences. Given a pair of images x1

and x2, two 4096 dimention features f1 and f2 are extracted

from the last layer of VGG16. These 2 feature are then con-

catenated into a 8192 dimension feature, which is then fed

into a stacked fully connected layers (8192 − > 4096 − >
1024 − > V − 1) to predict the relative view point differ-

ence using softmax.

ShapeCode [4]. We again use architecture similar to au-

toencoder, but instead of outputting a reconstructed image

ŷ, the network outputs {ŷj}Vj=1, where V is the total num-

ber of images associated to the same object. Specifically,

given the input image x with 224×224×3 dimension, the

output of the network has dimension 224×224×3×V and

the loss function becomes

L =

V∑

j=1

||ŷj − yj ||2 (2)

Note that these V images are organized sequentially and

support missing views as suggested in [4].
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Figure 1: TSNE visualization of the unseen class embed-

ding produced by different baselines. Each color represent a

class. All three proposed approaches have better embedding

structure as embedding from same class are more compact,

while embedding from different classes are spread out.

B. TSNE plots
Aside from the subplots in the main paper, we also visu-

alize the features from all the methods in Figure1.
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