
Appendices
A. Details for the Evaluation of Sampling.

We provide the implementation details of different sam-

pling approaches evaluated in Section 4.1. To sample K
points (point features) from a large-scale point cloud P with

N points (point features):

1. Farthest Point Sampling (FPS): We follow the imple-

mentation2 provided by PointNet++ [44], which is also

widely used in [33, 60, 36, 6, 70]. In particular, FPS is

implemented as an operator running on GPU.

2. Inverse Density Importance Sampling (IDIS): Given a

point pi, its density ρ is approximated by calculating

the summation of the distances between pi and its near-

est t points [15]. Formally:

ρ(pi) =
t∑

j=1

∣∣∣
∣∣∣pi − pji

∣∣∣
∣∣∣ , pji ∈ N (pi) (4)

where pji represents the coordinates (i.e. x-y-z) of the

jth point of the neighbour points set N (pi), t is set

to 16. All the points are ranked according to the in-

verse density 1
ρ of points. Finally, the top K points are

selected.

3. Random Sampling (RS): We implement random sam-

pling with the python numpy package. Specifically, we

first use the numpy function numpy.random.choice() to

generate K indices. We then gather the corresponding

spatial coordinates and per-point features from point

clouds by using these indices.

4. Generator-based Sampling (GS): The implementation

follows the code3 provided by [12]. We first train a

ProgressiveNet [12] to transform the raw point clouds

into ordered point sets according to their relevance to

the task. After that, the first K points are kept, while

the rest is discarded.

5. Continuous Relaxation based Sampling (CRS): CRS
is implemented with the self-attended gumbel-softmax

sampling [1][66]. Given a point feature set P ∈
R

N×(d+3) with 3D coordinates and per point features,

we firstly estimate a probability score vector s ∈ R
N

through a score function parameterized by a MLP

layer, i.e., s = softmax(MLP (P)), which learns a

categorical distribution. Then, with the Gumbel noise

g ∈ R
N drawn from the distribution Gumbel(0, 1).

2https://github.com/charlesq34/pointnet2
3https://github.com/orendv/learning_to_sample

Each sampled point feature vector y ∈ R
d+3 is calcu-

lated as follows:

y =
N∑
i=1

exp ((log(s(i)) + g(i))/τ)P (i)

∑N
j=1 exp ((log(s

(j)) + g(j))/τ)
, (5)

where s(i) and g(i) indicate the ith element in the vec-

tor s and g respectively, P (i) represents the ith row

vector in the input matrix P . τ > 0 is the annealing

temperature. When τ → 0, Equation 5 approaches the

discrete distribution and samples each row vector in P
with the probability p(y = P (i)) = s(i).

6. Policy Gradients based Sampling (PGS): Given a point

feature set P ∈ R
N×(d+3) with 3D coordinates and

per point features, we first predict a score s for each

point, which is learnt by an MLP function, i.e., s =
softmax(MLP (P)) + ε, where ε ∈ R

N is a zero-

mean Gaussian noise with the variance Σ for random

exploration. After that, we sample K vectors in P
with the top K scores. Sampling each point/vector can

be regarded as an independent action and a sequence

of them form a sequential Markov Decision Process

(MDP) with the following policy function π:

ai ∼ π(a|P (i); θ, s) (6)

where ai is the binary decision of whether to sample

the ith vector in P and θ is the network parameter of

the MLP. Hence to properly improve the sampling pol-

icy with an underivable sampling process, we apply

REINFORCE algorithm [50] as the gradient estimator.

The segmentation accuracy R is applied as the reward

value for the entire sampling process as J = R. It is

optimized with the following estimated gradients:

∂J
∂θ

≈ 1

M

M∑
m=1

N∑
i=1

∂

∂θ
log π(ai|P (i); θ,Σ)×

(R− bc − b(P (i))),

(7)

where M is the batch size, bc and b(P (i)) are two con-

trol variates [41] for alleviating the high variance prob-

lem of policy gradients.

LFA FC
RS

FCUS

(N
/1

6,
12

8)

(N
/6

4,
25

6)

(N
/2

56
,5

12
)

(N
/4

,3
2)

LFA

N
,8 LFA

RS RS
LFA
RS

MLP
MLP
US

MLP
US

MLP
FCFC

Input point clouds Output semantic labels

(N, din)

MLP
US

N
,8

(N
,6

4)

(N
/2

56
,5

12
)

(N
/6

4,
25

6)

(N
/1

6,
12

8)

(N
/4

,3
2)

N
,3

2

(N, nclass)

DP

RandLA-Net

Figure 7. The detailed architecture of our RandLA-Net. (N,D) represents the number of points and feature dimension respectively. FC:

Fully Connected layer, LFA: Local Feature Aggregation, RS: Random Sampling, MLP: shared Multi-Layer Perceptron, US: Up-sampling,

DP: Dropout.

B. Details of the Network Architecture
Figure 7 shows the detailed architecture of RandLA-

Net. The network follows the widely-used encoder-decoder

architecture with skip connections. The input point cloud is

first fed to a shared MLP layer to extract per-point features.

Four encoding and decoding layers are then used to learn

features for each point. At last, three fully-connected layers

and a dropout layer are used to predict the semantic label

of each point. The details of each part are as follows:

Network Input: The input is a large-scale point cloud

with a size of N × din (the batch dimension is dropped

for simplicity), where N is the number of points, din
is the feature dimension of each input point. For both

S3DIS [2] and Semantic3D [17] datasets, each point is

represented by its 3D coordinates and color information

(i.e., x-y-z-R-G-B), while each point of the SemanticKITTI

[3] dataset is only represented by 3D coordinates.

Encoding Layers: Four encoding layers are used in our

network to progressively reduce the size of the point

clouds and increase the per-point feature dimensions.

Each encoding layer consists of a local feature aggre-

gation module (Section 3.3) and a random sampling

operation (Section 3.2). The point cloud is downsam-

pled with a four-fold decimation ratio. In particular,

only 25% of the point features are retained after each

layer, i.e., (N → N
4 → N

16 → N
64 → N

256). Mean-

while, the per-point feature dimension is gradually

increased each layer to preserve more information, i.e.,

(8 → 32 → 128 → 256 → 512).

Decoding Layers: Four decoding layers are used after the

above encoding layers. For each layer in the decoder, we

first use the KNN algorithm to find one nearest neighboring

point for each query point, the point feature set is then

upsampled through a nearest-neighbor interpolation. Next,

the upsampled feature maps are concatenated with the

intermediate feature maps produced by encoding layers

through skip connections, after which a shared MLP is

applied to the concatenated feature maps.

Final Semantic Prediction: The final semantic label of

each point is obtained through three shared fully-connected

layers (N , 64) → (N , 32) → (N , nclass) and a dropout

layer. The dropout ratio is 0.5.

Network Output: The output of RandLA-Net is the pre-

dicted semantics of all points, with a size of N × nclass,

where nclass is the number of classes.

C. Additional Ablation Studies on LocSE
In Section 3.3, we encode the relative point position

based on the following equation:

rki = MLP
(
pi ⊕ pki ⊕ (pi − pki)⊕ ||pi − pki ||

)
(8)

We further investigate the effects of different spatial in-

formation in our framework. Particularly, we conduct the

following more ablative experiments for LocSE:

• 1) Encoding the coordinates of the point pi only.

• 2) Encoding the coordinates of neighboring points pki
only.

• 3) Encoding the coordinates of the point pi and its

neighboring points pki .

• 4) Encoding the coordinates of the point pi, the neigh-

boring points pki , and Euclidean distance ||pi − pki ||.
• 5) Encoding the coordinates of the point pi, the neigh-

boring points pki , and the relative position pi − pki .

Table 6 compares the mIoU scores of all ablated

networks on the SemanticKITTI [3] dataset. We can see

that: 1) Explicitly encoding all spatial information leads

to the best mIoU performance. 2) The relative position

pi−pki plays an important role in this component, primarily

because the relative point position enables the network to

be aware of the local geometric patterns. 3) Only encoding

LocSE mIoU(%)

(1) (pi) 48.9

(2) (pki) 50.7

(3) (pi, p
k
i) 52.5

(4) (pi, p
k
i , ||pi − pki ||) 53.7

(5) (pi, p
k
i , pi − pki) 56.8

(6) (pi, p
k
i , pi − pki , ||pi − pki ||) (The Full Unit) 57.1

Table 6. The mIoU result of RandLA-Net by encoding different

kinds of spatial information.

the point position pi or pki is unlikely to improve the

performance, because the relative local geometric patterns

are not explicitly encoded.

D. Additional Ablation Studies on Dilated
Residual Block

In our RandLA-Net, we stack two LocSE and Attentive

Pooling units as the standard dilated residual block to gradu-

ally increase the receptive field. To further evaluate how the

number of aggregation units in the dilated residual block

impact the entire network, we conduct the following two

more groups of experiments.

• 1) We simplify the dilated residual block by using only

one LocSE unit and attentive pooling.

• 2) We add one more LocSE unit and attentive pooling,

i.e., there are three aggregation units chained together.

Dilated residual block mIoU(%)

(1) one aggregation unit 52.9

(2) three aggregation units 54.2

(3) two aggregation units (The Standard Block) 57.1

Table 7. The mIoU scores of RandLA-Net regarding different

number of aggregation units in a residual block.

Table 7 shows the mIoU scores of different ablated net-

works on the validation split of the SemanticKITTI [3]

dataset. It can be seen that: 1) Only one aggregation unit in

the dilated residual block leads to a significant drop in seg-

mentation performance, due to the limited receptive field.

2) Three aggregation units in each block do not improve the

accuracy as expected. This is because the significantly in-

creased receptive fields and the large number of trainable

parameters tend to be overfitted.

E. Visualization of Attention Scores
To better understand the attentive pooling, it is desirable

to visualize the learned attention scores. However, since the

attentive pooling operates on a relatively small local point

set (i.e., K=16), it is hardly able to recognize meaningful

shapes from such small local regions. Alternatively, we vi-

sualize the learned attention weight matrix W defined in

Equation 2 in each layer. As shown in Figure 8, the attention

weights have large values in the first encoding layers, then

gradually become smooth and stable in subsequent layers.

This shows that the attentive pooling tends to choose promi-

nent or key point features at the beginning. After the point

cloud being significantly downsampled, the attentive pool-

ing layer tends to retain the majority of those point features.

Figure 8. Visualization of the learned attention matrix in differ-

ent layers. From top left to bottom right: 16×16 attention ma-

trix, 64×64 attention matrix, 128×128 attention matrix, 256×256

attention matrix. The yellow color represents higher attention

scores.

F. Additional Results on Semantic3D

More qualitative results of RandLA-Net on the Seman-

tic3D [17] dataset (reduced-8) are shown in Figure 9.

G. Additional Results on SemanticKITTI

Figure 10 shows more qualitative results of our RandLA-

Net on the validation set of SemanticKITTI [3]. The red

boxes showcase the failure cases. It can be seen that, the

points belonging to other-vehicle are likely to be misclassi-

fied as car, mainly because the partial point clouds without

colors are extremely difficult to be distinguished between

the two similar classes. In addition, our approach tends to

fail in several minority classes such as bicycle, motorcycle,

bicyclist and motorcyclist, due to the extremely imbalanced

point distribution in the dataset. For example, the number

of points for vegetation is 7000 times more than that of mo-
torcyclist.

Figure 9. Qualitative results of RandLA-Net on the reduced-8 split of Semantic3D. From left to right: full RGB colored point clouds,

predicted semantic labels of full point clouds, detailed view of colored point clouds, detailed view of predicted semantic labels. Note that

the ground truth of the test set is not publicly available.

H. Additional Results on S3DIS
We report the detailed 6-fold cross validation results of

our RandLA-Net on S3DIS [2] in Table 8. Figure 11 shows

more qualitative results of our approach.

I. Video Illustration
We provide a video to show qualitative results of

our RandLA-Net on both indoor and outdoor datasets,

which can be viewed at https://www.youtube.com/
watch?v=Ar3eY_lwzMk&t=9s.

GroundTruth Prediction GroundTruth Prediction

car bicycle
motorcycletruck

other-vehicle motorcyclistperson bicyclist
road

parking
sidewalk other-groundbuilding

fence vegetation
trunkterrain

pole
traffic-sign

Figure 10. Qualitative results of RandLA-Net on the validation split of SemanticKITTI [3]. Red boxes show the failure cases.

OA(%) mAcc(%) mIoU(%) ceil. floor wall beam col. wind. door table chair sofa book. board clut.

PointNet [43] 78.6 66.2 47.6 88.0 88.7 69.3 42.4 23.1 47.5 51.6 54.1 42.0 9.6 38.2 29.4 35.2

RSNet [21] - 66.5 56.5 92.5 92.8 78.6 32.8 34.4 51.6 68.1 59.7 60.1 16.4 50.2 44.9 52.0

3P-RNN [67] 86.9 - 56.3 92.9 93.8 73.1 42.5 25.9 47.6 59.2 60.4 66.7 24.8 57.0 36.7 51.6

SPG [26] 86.4 73.0 62.1 89.9 95.1 76.4 62.8 47.1 55.3 68.4 73.5 69.2 63.2 45.9 8.7 52.9

PointCNN [33] 88.1 75.6 65.4 94.8 97.3 75.8 63.3 51.7 58.4 57.2 71.6 69.1 39.1 61.2 52.2 58.6

PointWeb [70] 87.3 76.2 66.7 93.5 94.2 80.8 52.4 41.3 64.9 68.1 71.4 67.1 50.3 62.7 62.2 58.5

ShellNet [69] 87.1 - 66.8 90.2 93.6 79.9 60.4 44.1 64.9 52.9 71.6 84.7 53.8 64.6 48.6 59.4

KPConv [54] - 79.1 70.6 93.6 92.4 83.1 63.9 54.3 66.1 76.6 57.8 64.0 69.3 74.9 61.3 60.3
RandLA-Net (Ours) 88.0 82.0 70.0 93.1 96.1 80.6 62.4 48.0 64.4 69.4 69.4 76.4 60.0 64.2 65.9 60.1

Table 8. Quantitative results of different approaches on S3DIS [2] (6-fold cross-validation). Overall Accuracy (OA, %), mean class

Accuracy (mAcc, %), mean IoU (mIoU, %), and per-class IoU (%) are reported.

Figure 11. Semantic segmentation results of our RandLA-Net on the complete point clouds of Areas 1-6 in S3DIS. Left: full RGB input

cloud; middle: predicted labels; right: ground truth.

