Appendices

A. Details for the Evaluation of Sampling.

We provide the implementation details of different sam-
pling approaches evaluated in Section 4.1. To sample K
points (point features) from a large-scale point cloud P with
N points (point features):

1. Farthest Point Sampling (FPS): We follow the imple-
mentation” provided by PointNet++ [44], which is also
widely used in [33, 60, 36, 6, 70]. In particular, FPS is
implemented as an operator running on GPU.

2. Inverse Density Importance Sampling (IDIS): Given a
point p;, its density p is approximated by calculating
the summation of the distances between p; and its near-
est ¢ points [15]. Formally:
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where p{ represents the coordinates (i.e. x-y-z) of the
4" point of the neighbour points set N (p;), t is set
to 16. All the points are ranked according to the in-
verse density % of points. Finally, the top K points are
selected.

3. Random Sampling (RS): We implement random sam-
pling with the python numpy package. Specifically, we
first use the numpy function numpy.random.choice() to
generate K indices. We then gather the corresponding
spatial coordinates and per-point features from point
clouds by using these indices.

4. Generator-based Sampling (GS): The implementation
follows the code® provided by [12]. We first train a
ProgressiveNet [12] to transform the raw point clouds
into ordered point sets according to their relevance to
the task. After that, the first K points are kept, while
the rest is discarded.

5. Continuous Relaxation based Sampling (CRS): CRS
is implemented with the self-attended gumbel-softmax
sampling [1][66]. Given a point feature set P &
RN *(4+3) with 3D coordinates and per point features,
we firstly estimate a probability score vector s € RY
through a score function parameterized by a MLP
layer, i.e., s = softmax(M LP(P)), which learns a
categorical distribution. Then, with the Gumbel noise
g € RY drawn from the distribution Gumbel(0,1).

2https://github.com/charlesq34/pointnet?2
3https://github.com/orendv/learning_to_sample

Each sampled point feature vector y € R9+3 is calcu-
lated as follows:

exp ((log(s®) 4 g@) /7) P
i=1 Z;V=1 exp ((log(sW)) + g(j))/7)7

y= &)

where s(V) and g(*) indicate the i*" element in the vec-
tor s and g respectively, pY) represents the i** row
vector in the input matrix P. 7 > 0 is the annealing
temperature. When 7 — 0, Equation 5 approaches the
discrete distribution and samples each row vector in P
with the probability p(y = P(V) = s().

. Policy Gradients based Sampling (PGS): Given a point

feature set P € RV*(4+3) with 3D coordinates and
per point features, we first predict a score s for each
point, which is learnt by an MLP function, i.e., s =
softmax(MLP(P)) + ¢, where ¢ € RY is a zero-
mean Gaussian noise with the variance 3 for random
exploration. After that, we sample K vectors in P
with the top K scores. Sampling each point/vector can
be regarded as an independent action and a sequence
of them form a sequential Markov Decision Process
(MDP) with the following policy function 7:

a; ~ w(a|PY; 0, s) (6)

where a; is the binary decision of whether to sample
the i'" vector in P and 6 is the network parameter of
the MLP. Hence to properly improve the sampling pol-
icy with an underivable sampling process, we apply
REINFORCE algorithm [50] as the gradient estimator.
The segmentation accuracy R is applied as the reward
value for the entire sampling process as J = R. Itis
optimized with the following estimated gradients:
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(R —b° = b(PY)),
where M is the batch size, b° and b(P") are two con-

trol variates [4 1] for alleviating the high variance prob-
lem of policy gradients.
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Figure 7. The detailed architecture of our RandLA-Net. (N, D) represents the number of points and feature dimension respectively. FC:
Fully Connected layer, LFA: Local Feature Aggregation, RS: Random Sampling, MLP: shared Multi-Layer Perceptron, US: Up-sampling,

DP: Dropout.

B. Details of the Network Architecture

Figure 7 shows the detailed architecture of RandLA-
Net. The network follows the widely-used encoder-decoder
architecture with skip connections. The input point cloud is
first fed to a shared MLP layer to extract per-point features.
Four encoding and decoding layers are then used to learn
features for each point. At last, three fully-connected layers
and a dropout layer are used to predict the semantic label
of each point. The details of each part are as follows:

Network Input: The input is a large-scale point cloud
with a size of N X d;, (the batch dimension is dropped
for simplicity), where N is the number of points, d;,
is the feature dimension of each input point. For both
S3DIS [2] and Semantic3D [17] datasets, each point is
represented by its 3D coordinates and color information
(i.e., x-y-z-R-G-B), while each point of the SemanticKITTI
[3] dataset is only represented by 3D coordinates.

Encoding Layers: Four encoding layers are used in our
network to progressively reduce the size of the point
clouds and increase the per-point feature dimensions.
Each encoding layer consists of a local feature aggre-
gation module (Section 3.3) and a random sampling
operation (Section 3.2). The point cloud is downsam-
pled with a four-fold decimation ratio. In particular,
only 25% of the point features are retained after each
layer, ie, (N = § — & — X — ). Mean-
while, the per-point feature dimension is gradually
increased each layer to preserve more information, i.e.,
(8 = 32 — 128 — 256 — 512).

Decoding Layers: Four decoding layers are used after the
above encoding layers. For each layer in the decoder, we
first use the KNN algorithm to find one nearest neighboring
point for each query point, the point feature set is then
upsampled through a nearest-neighbor interpolation. Next,
the upsampled feature maps are concatenated with the
intermediate feature maps produced by encoding layers
through skip connections, after which a shared MLP is

applied to the concatenated feature maps.

Final Semantic Prediction: The final semantic label of
each point is obtained through three shared fully-connected
layers (N, 64) — (N, 32) — (N, nciqss) and a dropout
layer. The dropout ratio is 0.5.

Network Output: The output of RandLA-Net is the pre-
dicted semantics of all points, with a size of N X n¢jqss,
where 1,455 18 the number of classes.

C. Additional Ablation Studies on LocSE

In Section 3.3, we encode the relative point position
based on the following equation:

r) = MLP(piéBp? @ (pi — pF) @ ||ps —pfl\) (8)

We further investigate the effects of different spatial in-
formation in our framework. Particularly, we conduct the
following more ablative experiments for LocSE:

e 1) Encoding the coordinates of the point p; only.

e 2) Encoding the coordinates of neighboring points p¥
only.

e 3) Encoding the coordinates of the point p; and its
neighboring points p¥.

e 4) Encoding the coordinates of the point p;, the neigh-
boring points p¥, and Euclidean distance ||p; — p¥||.

e 5) Encoding the coordinates of the point p;, the neigh-
boring points pf, and the relative position p; — p¥.

Table 6 compares the mloU scores of all ablated
networks on the SemanticKITTI [3] dataset. We can see
that: 1) Explicitly encoding all spatial information leads
to the best mloU performance. 2) The relative position
p; — p¥ plays an important role in this component, primarily
because the relative point position enables the network to
be aware of the local geometric patterns. 3) Only encoding



LocSE mloU(%)
1) (pl) 48.9
) (p¥) 50.7
3) (p“pz ) 52.5
@ (pz,pz Alp: = pEID) 53.7
5 (pi, P¥, pi — pF) 56.8
(6) (pi, P§, pi — p¥, |lpi — pl]) (The Full Unit)  57.1

Table 6. The mloU result of RandLA-Net by encoding different
kinds of spatial information.

the point position p; or pf is unlikely to improve the
performance, because the relative local geometric patterns
are not explicitly encoded.

D. Additional Ablation Studies on Dilated
Residual Block

In our RandLLA-Net, we stack two LocSE and Attentive
Pooling units as the standard dilated residual block to gradu-
ally increase the receptive field. To further evaluate how the
number of aggregation units in the dilated residual block
impact the entire network, we conduct the following two
more groups of experiments.

e 1) We simplify the dilated residual block by using only
one LocSE unit and attentive pooling.

e 2) We add one more LocSE unit and attentive pooling,
i.e., there are three aggregation units chained together.

Dilated residual block mloU(%)
(1) one aggregation unit 529
(2) three aggregation units 54.2

(3) two aggregation units (The Standard Block ) 57.1

Table 7. The mloU scores of RandLA-Net regarding different
number of aggregation units in a residual block.

Table 7 shows the mIoU scores of different ablated net-
works on the validation split of the SemanticKITTI [3]
dataset. It can be seen that: 1) Only one aggregation unit in
the dilated residual block leads to a significant drop in seg-
mentation performance, due to the limited receptive field.
2) Three aggregation units in each block do not improve the
accuracy as expected. This is because the significantly in-
creased receptive fields and the large number of trainable
parameters tend to be overfitted.

E. Visualization of Attention Scores

To better understand the attentive pooling, it is desirable
to visualize the learned attention scores. However, since the
attentive pooling operates on a relatively small local point
set (i.e., K{=16), it is hardly able to recognize meaningful

shapes from such small local regions. Alternatively, we vi-
sualize the learned attention weight matrix W defined in
Equation 2 in each layer. As shown in Figure 8, the attention
weights have large values in the first encoding layers, then
gradually become smooth and stable in subsequent layers.
This shows that the attentive pooling tends to choose promi-
nent or key point features at the beginning. After the point
cloud being significantly downsampled, the attentive pool-
ing layer tends to retain the majority of those point features.
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Figure 8. Visualization of the learned attention matrix in differ-
ent layers. From top left to bottom right: 16x16 attention ma-
trix, 64 x 64 attention matrix, 128 x 128 attention matrix, 256 x 256
attention matrix. The yellow color represents higher attention

scores.

F. Additional Results on Semantic3D

More qualitative results of RandLA-Net on the Seman-
tic3D [17] dataset (reduced-8) are shown in Figure 9.

G. Additional Results on SemanticKITTI

Figure 10 shows more qualitative results of our RandLA-
Net on the validation set of SemanticKITTI [3]. The red
boxes showcase the failure cases. It can be seen that, the
points belonging to other-vehicle are likely to be misclassi-
fied as car, mainly because the partial point clouds without
colors are extremely difficult to be distinguished between
the two similar classes. In addition, our approach tends to
fail in several minority classes such as bicycle, motorcycle,
bicyclist and motorcyclist, due to the extremely imbalanced
point distribution in the dataset. For example, the number
of points for vegetation is 7000 times more than that of mo-
torcyclist.
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Figure 9. Qualitative results of RandLA-Net on the reduced-8 split of Semantic3D. From left to right: full RGB colored point clouds,
predicted semantic labels of full point clouds, detailed view of colored point clouds, detailed view of predicted semantic labels. Note that
the ground truth of the test set is not publicly available.

H. Additional Results on S3DIS

We report the detailed 6-fold cross validation results of
our RandLA-Net on S3DIS [2] in Table 8. Figure 11 shows
more qualitative results of our approach.

I. Video Ilustration

We provide a video to show qualitative results of
our RandLA-Net on both indoor and outdoor datasets,
which canbe viewed at https://www.youtube.com/
watch?v=Ar3eY_lwzMk&t=9s.
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Figure 10. Qualitative results of RandLA-Net on the validation split of SemanticKITTI [3]. Red boxes show the failure cases.

OA(%) mAcc(%) mloU(%) ceil. floor wall beam col. wind. door table chair sofa book. board clut.

PointNet [43]  78.6 66.2 47.6 88.0 887 693 424 231 475 516 541 420 96 382 294 352

RSNet [21] - 66.5 56.5 925 928 78.6 328 344 516 681 597 60.1 164 502 449 520

3P-RNN [67]  86.9 - 56.3 929 938 73.1 425 259 476 592 604 667 248 570 367 516

SPG [20]  86.4 73.0 62.1 89.9 951 764 628 471 553 684 735 692 632 459 87 529

PointCNN [33]  88.1 75.6 65.4 948 973 758 633 517 584 572 716 69.1 391 612 522 586
PointWeb [70]  87.3 76.2 66.7 935 942 808 524 413 649 681 714 671 503 627 622 585
ShellNet [69]  87.1 - 66.8 902 936 799 604 441 649 529 716 847 538 0646 48.6 594
KPConv [54] - 79.1 70.6 93.6 924 831 639 543 661 766 578 640 693 749 613 603
RandLA-Net (Ours)  88.0 82.0 70.0 93.1 96.1 80.6 624 480 644 694 0694 764 600 642 659 60.1

Table 8. Quantitative results of different approaches on S3DIS [2] (6-fold cross-validation). Overall Accuracy (OA, %), mean class
Accuracy (mAcc, %), mean IoU (mloU, %), and per-class IoU (%) are reported.



!.AH'n. ;

!

ceiling M floor M wall M column [ beam M window W door
M table MW chair B bookcase M sofa B board clutter B unlabelled

Figure 11. Semantic segmentation results of our RandLA-Net on the complete point clouds of Areas 1-6 in S3DIS. Left: full RGB input
cloud; middle: predicted labels; right: ground truth.



