
Supplementary Materials: Controllable Orthogonalization in Training DNNs

Lei Huang1 Li Liu1 Fan Zhu1 Diwen Wan1,2 Zehuan Yuan3 Bo Li4 Ling Shao1

1Inception Institute of Artificial Intelligence (IIAI), Abu Dhabi, UAE
2University of Electronic Science and Technology of China, Chengdu, China

3ByteDance AI Lab, Beijing, China
4University of Illinois at Urbana-Champaign Illinois, USA

Algorithm I Orthogonalization by Newton’s Iteration.
1: Input: proxy parameters Z ∈ Rn×d and iteration num-

bers T .
2: Bounding Z’s singular values: V = Z

�Z�F
.

3: Calculate covariance matrix: S = VVT .
4: B0 = I.
5: for t = 1 to T do
6: Bt =

3
2Bt−1 − 1

2B
3
t−1S.

7: end for
8: W = BTV.
9: Output: orthogonalized weight matrix: W ∈ Rn×d.

A. Derivation of Back-Propagation
Given the layer-wise orthogonal weight matrix W, we

can perform the forward pass to calculate the loss of the deep
neural networks (DNNs). It’s necessary to back-propagate
through the orthogonalization transformation, because we
aim to update the proxy parameters Z. For illustration, we
first describe the proposed orthogonalization by Newton’s
iteration (ONI) in Algorithm I. Given the gradient with re-
spect to the orthogonalized weight matrix ∂L

∂W , we target to
compute ∂L

∂Z . The back-propagation is based on the chain
rule. From Line 2 in Algorithm I, we have:

∂L
∂Z

=
1

�Z�F
∂L
∂V

+ tr(
∂L
∂V

T

Z)
∂ 1

�Z�F
∂�Z�F

∂�Z�F
∂Z

=
1

�Z�F
∂L
∂V

− tr(
∂L
∂V

T

Z)
1

�Z�2F
Z

�Z�F

=
1

�Z�F
(
∂L
∂V

− tr(∂L
∂V

T
Z)

�Z�2F
Z), (1)

where tr(·) indicates the trace of the corresponding matrix
and ∂L

∂V can be calculated from Lines 3 and 8 in Algorithm
I:

∂L
∂V

= (BT)
T ∂L
∂W

+ (
∂L
∂S

+
∂L
∂S

T

)V. (2)

We thus need to calculate ∂L
∂S , which can be computed

Algorithm II Back-propagation of ONI.

1: Input: ∂L
∂W ∈ Rn×d and variables from respective for-

ward pass: Z, V, S, {Bt}Tt=1.
2: ∂L

∂BT
= ∂L

∂WVT .
3: for t = T down to 1 do
4: ∂L

∂Bt−1
= − 1

2 (
∂L
∂Bt

(B2
t−1S)

T + (B2
t−1)

T ∂L
∂Bt

ST +

BT
t−1

∂L
∂Bt

(Bt−1S)
T) + 3

2
∂L
∂Bt

.
5: end for
6: ∂L

∂S = − 1
2

�T
t=1(B

3
t−1)

T ∂L
∂Bt

.

7: ∂L
∂V = (BT)

T ∂L
∂W + (∂L∂S + ∂L

∂S

T
)V.

8: ∂L
∂Z = 1

�Z�F
(∂L
∂V − tr(∂L

∂V
T
Z)

�Z�2
F

Z).

9: Output: ∂L
∂Z ∈ Rn×d.

from Lines 5, 6 and 7 in Algorithm I:

∂L

∂S
= −1

2

T�

t=1

(B3
t−1)

T ∂L

∂Bt
, (3)

where ∂L
∂BT

= ∂L
∂WVT and { ∂L

∂Bt−1
, t = T, ..., 1} can be

iteratively calculated from Line 6 in Algorithm I as follows:

∂L
∂Bt−1

= −1

2
(
∂L
∂Bt

(B2
t−1S)

T + (B2
t−1)

T ∂L
∂Bt

ST

+BT
t−1

∂L
∂Bt

(Bt−1S)
T) +

3

2

∂L
∂Bt

. (4)

In summary, the back-propagation of Algorithm I is
shown in Algorithm II.

We further derive the back-propagation of the accelerated
ONI method with the centering and more compact spectral
bounding operation, as described in Section 3.3 of the pa-
per. For illustration, Algorithm III describes the forward
pass of the accelerated ONI. Following the calculation in
Algorithm II, we can obtain ∂L

∂V . To simplify the deriva-
tion, we represent Line 3 of Algorithm III as the following

Algorithm III ONI with acceleration.
1: Input: proxy parameters Z ∈ Rn×d and iteration num-

bers N .
2: Centering: Zc = Z− 1

dZ11
T .

3: Bounding Z’s singular values: V = Zc√
�ZcZT

c �F

.

4: Execute Step. 3 to 8 in Algorithm I.
5: Output: orthogonalized weight matrix: W ∈ Rn×d.

formulations:

M =ZcZ
T
c (5)

δ =
�

�M�F (6)

V =
Zc

δ
. (7)

It’s easy to calculate ∂L
∂Zc

from Eqn.5 and Eqn.7 as fol-
lows:

∂L
∂Zc

=
1

δ

∂L
∂V

+ (
∂L
∂M

+
∂L
∂M

T

)Zc, (8)

where ∂L
∂M can be computed based on Eqn. 6 and Eqn. 7:

∂L
∂M

=
∂L
∂δ

∂δ

∂�M�F
∂�M�F
∂M

= tr(
∂L
∂V

T

Zc)(− 1

δ2
)

1

2
�

�M�F
M

�M�F

= − tr(∂L
∂V

T
Zc)

2δ5
M. (9)

Based on Line 2 in Algorithm III, we can achieve ∂L
∂Z as

follows:

∂L
∂Z

=
∂L
∂Z c

− 1

d
11T ∂L

∂Z c
. (10)

In summary, Algorithm IV describes the back-
propagation of the Algorithm III.

B. Proof of Convergence Condition for New-
ton’s Iteration

In Section 3 of the paper, we show that bounding the
spectral of the proxy parameters matrix by

V = φN (Z) =
Z

�Z�F
(11)

and
V = φN (Z) =

Z�
�ZZT �F

(12)

can satisfy the convergence condition of Newton’s Iterations
as follows:

�I− S�2 < 1, (13)

Algorithm IV Back-propagation of ONI with acceleration.

1: Input: ∂L
∂W ∈ Rn×d and variables from respective for-

ward pass: Zc, V, S, {Bt}Tt=1.
2: Calculate ∂L

∂V from Line 2 to Line 7 in Algorithm II.
3: Calculate M and δ from Eqn. 5 and Eqn. 6.
4: Calculate ∂L

∂M based on Eqn. 9.
5: Calculate ∂L

∂Zc
based on Eqn. 8.

6: Calculate ∂L
∂Z based on Eqn. 10.

7: Output: ∂L
∂Z ∈ Rn×d.

where S = VVT and the singular values of Z are nonzero.
Here we will prove this conclusion, and we also prove that
�Z�F >

�
�ZZT �F .

Proof. By definition, �Z�F can be represented as �Z�F =�
tr(ZZT). Given Eqn.11, we calculate

S = VVT =
ZZT

tr(ZZT)
. (14)

Let’s denote M = ZZT and the eigenvalues of M are
{λ1, ...,λn}. We have λi > 0, since M is a real symmetric
matrix and the singular values of Z are nonzero. We also
have S = M

tr(M) and the eigenvalues of S are λi�n
i=1 λi

. Fur-

thermore, the eigenvalues of (I− S) are 1− λi�n
i=1 λi

, thus
satisfying the convergence condition described by Eqn.13.

Similarly, given V = φN (Z) = Z√
�ZZT �F

, we have

S = ZZT

�ZZT �F
= M

�M�F
and its corresponding eigenvalues

are λi√�n
i=1 λ2

i

. Therefore, the singular values of (I− S) are

1 − λi√�n
i=1 λ2

i

, also satisfying the convergence condition

described by Eqn.13.
We have �Z�F =

�
tr(M) =

��n
i=1 λi and�

�ZZT �F =
�

�M�F = 4
��n

i=1 λ
2
i . It’s easy to

demonstrate that �Z�F >
�
�ZZT �F , since (

�n
i=1 λi)

2 >�n
i=1 λ

2
i .

In Section 3 of the paper, we show that the Newton’s
iteration by bounding the spectrum with Eqn. 11 is equivalent
to the Newton’s iteration proposed in [11]. Here, we provide
the details. In [11], they bound the covariance matrix M =
ZZT by the trace of M as M

tr(M) . It’s clear that S used in
Algorithm I is equal to M

tr(M) , based on Eqn. 14 shown in
the previous proof.

C. Orthogonality for Group Based Method
In Section 3.4 of the paper, we argue that group based

methods cannot ensure the whole matrix W ∈ Rn×d to be
either row or column orthogonal, when n > d. Here we
provide more details.

configurations cudnn cudnn + ONI-T1 cudnn + ONI-T3 cudnn + ONI-T5 cudnn + ONI-T7
Fh = Fw = 3, n=d=256, m=256 118.6 122.1 122.9 124.4 125.7
Fh = Fw = 3, n=d=256, m=32 15.8 18.3 18.9 19.5 20.8
Fh = Fw = 3, n=d=1024, m=32 71.1 81.7 84.3 89.5 94.2
Fh = Fw = 1, n=d=256, m=256 28.7 31.5 32.1 33.7 34.6
Fh = Fw = 1, n=d=256, m=32 10.1 13 13.6 14.2 15.3
Fh = Fw = 1, n=d=1024, m=32 22.2 27.6 29.7 32.9 37.0

Table A. Comparison of wall-clock time (ms). We fix the input with size h = w = 32. We evaluate the total wall-clock time of training for
each iteration (forward pass + back-propagation pass). Note that ‘cudnn + ONI-T5’ indicates the ‘cudnn’ convolution wrapped in our ONI
method, using an iteration number of 5.

δRow δColumn

ONI-Full 5.66 0
OLM-G32 8 5.66
OLM-G16 9.85 8.07
OLM-G8 10.58 8.94

Table B. Evaluation for row and column orthogonalization with the
group based methods. The entries of proxy matrix Z ∈ R32×64

are sampled from the Gaussian distribution N(0, 1). We evaluate
the row orthogonality δRow = �WWT − I�F and column orthog-
onality δColumn = �WTW − I�F . ‘OLM-G32’ indicates the
eigen decomposition based orthogonalization method described in
[10], with a group size of 32.

We follow the experiments described in Figure.3 of the
paper, where we sample the entries of proxy matrix Z ∈
R64×32 from the Gaussian distribution N(0, 1). We apply
the eigen decomposition based orthogonalization method
[10] with group size G, to obtain the orthogonalized matrix
W. We vary the group size G ∈ {32, 16, 8}. We evaluate the
corresponding row orthogonality δRow = �WWT − I�F
and column orthogonality δColumn = �WTW − I�F . The
results are shown in Table B. We observe that the group
based orthogonalization method cannot ensure the whole
matrix W to be either row or column orthogonal, while our
ONI can ensure column orthogonality. We also observe that
the group based method has degenerated orthogonality, with
decreasing group size.

We also conduct an experiment when n = d, where
we sample the entries of proxy matrix Z ∈ R64×64 from
the Gaussian distribution N(0, 1). We vary the group size
G ∈ {64, 32, 16, 8}. Note that G = 64 represents full
orthogonalization. Figure I shows the distribution of the
eigenvalues of WWT . We again observe that the group
based method cannot ensure the whole weight matrix to
be row orthogonal. Furthermore, orthogonalization with
smaller group size tends to be worse.

D. Comparison of Wall Clock Times
In Section 3.6 of the paper, we show that, given a con-

volutional layer with filters W ∈ Rn×d×Fh×Fw and m
mini-batch data {xi ∈ Rd×h×w}mi=1, the relative com-

0 20 40 60
Index of eigenvalue

0

1

2

3

4

E
ig

en
va

lu
e

G8
G16
G32
G64

Figure I. The distribution of the eigenvalues of WWT with dif-
ferent group size G. The entries of proxy matrix Z ∈ R64×64 are
sampled from the Gaussian distribution N(0, 1).

putational cost of ONI over the convolutional layer is
2n

mhw + 3Nn2

mdhwFhFw
. In this section, we compare the of wall

clock time between the convolution wrapping with our ONI
and the standard convolution. In this experiment, our ONI
is implemented based on Torch [4] and we wrap it to the
‘cudnn’ convolution [3]. The experiments are run on a TI-
TAN Xp.

We fix the input to size h = w = 32, and vary the kernel
size (Fh and Fw), the feature dimensions (n and d) and the
batch size m. Table A shows the wall clock time under
different configurations. We compare the standard ‘cudnn’
convolution (denoted as ‘cudnn’) and the ‘cudnn’ wrapped
with our ONI (denoted as ‘cudnn + ONI’).

We observe that our method introduces negligible com-
putational costs when using a 3 × 3 convolution, feature
dimension n = d = 256 and batch size of m = 256. Our
method may degenerate in efficiency with a smaller ker-
nel size, larger feature dimension and smaller batch size,
based on the computational complexity analysis. However,
our method (with iteration of 5) ‘cudnn + ONI-T5’ only
costs 1.48× over the standard convolution ‘cudnn’, under
the worst configuration, Fh = Fw = 1, n = d = 1024 and
m=32.

E. Proof of Theorems

Here we prove the two theorems described in Section 3.5
and 3.6 of the paper.

Theorem 1. Let ĥ = Wx, where WWT = I and
W ∈ Rn×d. Assume: (1) Ex(x) = 0, cov(x) = σ2

1I,
and (2) E ∂L

∂ĥ
(∂L
∂ĥ

) = 0, cov(∂L
∂ĥ

) = σ2
2I. If n = d, we have

the following properties: (1) �ĥ� = �x�; (2) Eĥ(ĥ) = 0,
cov(ĥ) = σ2

1I; (3) �∂L
∂x � = �∂L

∂ĥ
�; (4) E ∂L

∂x
(∂L∂x) = 0,

cov(∂L∂x) = σ2
2I. In particular, if n < d, property (2) and (3)

hold; if n > d, property (1) and (4) hold.

Proof. Based on n = d and WWT = I, we have that W
is a square orthogonal matrix. We thus have WTW = I.
Besides, we have ∂L

∂x = ∂L
∂ĥ

W1.
(1) Therefore, we have

�ĥ�2 = ĥT ĥ = xTWTWx = xTx = �x�2. (15)

We thus get �ĥ� = �x�.
(2) It’s easy to calculate:

Eĥ(ĥ) = Ex(Wx) = WEx(x) = 0. (16)

The covariance of ĥ is given by

cov(ĥ) = Eĥ((ĥ− Eĥ(ĥ)) · (ĥ− Eĥ(ĥ))
T)

= Ex(W(x− Ex(x)) · (W(x− Ex(x)))
T)

= WEx((x− Ex(x)) · (x− Ex(x))
T)WT

= Wcov(x)WT

= Wσ2
1IW

T

= σ2
1WWT

= σ2
1 . (17)

(3) Similar to the proof of (1),

�∂L
∂x

�2 =
∂L
∂x

∂L
∂x

T

=
∂L
∂ĥ

WWT ∂L
∂ĥ

T

=
∂L
∂ĥ

∂L
∂ĥ

T

= �∂L
∂ĥ

�2. (18)

We thus have �∂L
∂x � = �∂L

∂ĥ
�.

(4) Similar to the proof of (2), we have

E ∂L
∂x

(
∂L
∂x

) = E ∂L
∂ĥ

(
∂L
∂ĥ

W) = E ∂L
∂ĥ

(
∂L
∂ĥ

)W = 0. (19)

1We follow the common setup where the vectors are column vectors
when their derivations are row vectors.

The covariance of ∂L
∂x is given by

cov(
∂L
∂x

) = E ∂L
∂x

((
∂L
∂x

− E ∂L
∂x

(
∂L
∂x

))T (
∂L
∂x

− E ∂L
∂x

(
∂L
∂x

)))

= E ∂L
∂ĥ

(((
∂L
∂ĥ

− E ∂L
∂ĥ

(
∂L
∂ĥ

))W)T (
∂L
∂ĥ

− E ∂L
∂ĥ

(
∂L
∂ĥ

))W)

= WTE ∂L
∂ĥ

((
∂L
∂ĥ

− E ∂L
∂ĥ

(
∂L
∂ĥ

))T (
∂L
∂ĥ

− E ∂L
∂ĥ

(
∂L
∂ĥ

)))W

= WT cov(
∂L
∂ĥ

)W

= WTσ2
2IW

= σ2
2W

TW

= σ2
2 . (20)

Besides, if n < d, it is easy to show that properties (2) and
(3) hold; if n > d, properties (1) and (4) hold.

Theorem 2. Let h = max(0,Wx), where WWT = σ2I
and W ∈ Rn×d. Assume x is a normal distribution with
Ex(x) = 0, cov(x) = I. Denote the Jacobian matrix as
J = ∂h

∂x . If σ2 = 2, we have Ex(JJ
T) = I.

Proof. For denotation, we use Ai: and A:j to represent the
i-th row and the j-th column of A, respectively. Based on
WWT = σ2I, we obtain Wi:(Wj:)

T = 0 for i �= j and
Wi:(Wi:)

T = σ2 otherwise. Let ĥ = Wx. This yields

Ji: =
∂hi

∂ĥi

∂ĥi

x
=

∂hi

∂ĥi

Wi:. (21)

Denote M = JJ. This yields the following equation
from Eqn. 21:

Mij = Ji:(Jj:)
T

=
∂hi

∂ĥi

Wi:(Wj:)
T ∂hj

∂ĥj

=
∂hi

∂ĥi

∂hj

∂ĥj

(Wi:(Wj:)
T). (22)

If i �= j, we obtain Mij = 0. For i = j, we have:

Mii = Ji:(Ji:)
T = (

∂hi

∂ĥi

)2σ2 = 1(ĥi > 0)σ2, (23)

where 1(ĥi > 0) indicates 1 for ĥi > 0 and 0 other-
wise. Since x is a normal distribution with Ex(x) = 0

and cov(x) = I, we have that ĥ is also a normal distribution,
with Eĥ(ĥ) = 0 and cov(ĥ) = I, based on Theorem 1. We
thus obtain

Ex(Mii) = Eĥi
1(ĥi > 0)σ2 =

1

2
σ2. (24)

Therefore, Ex(JJ
T) = Ex(M) = σ2

2 I = I.

0 5 10 15
Layer

10-5

100

M
ea

n
ab

so
lu

te
 v

al
ue

ONI-NS-Init
ONI-Init
ONI-NS-End
ONI-End

(a)

0 5 10 15
Layer

10-5

100

M
ea

n
ab

os
ul

te
 v

al
ue

ONI-NS-Init
ONI-Init
ONI-NS-End
ONI-End

(b)

Figure II. The magnitude of the activation and gradient for each
layer on a 20-layer MLP. (a) The mean absolute value of the acti-
vation σx for each layer; and (b) the mean absolute value of the
gradient σ ∂L

∂h
for each layer.

F. Details and More Experimental Results on
Discriminative Classification

F.1. MLPs on Fashion-MNIST

Details of Experimental Setup Fashion-MNIST consists
of 60k training and 10k test images. Each image has a size
of 28 × 28, and is associated with a label from one of 10
classes. We use the MLP with varying depths and the num-
ber of neurons in each layer is 256. We use ReLU [17] as
the nonlinearity. The weights in each layer are initialized by
random initialization [13] and we use an iteration number
of 5 for ONI, unless otherwise stated. We employ stochas-
tic gradient descent (SGD) optimization with a batch size
of 256, and the learning rates are selected, based on the
validation set (5, 000 samples from the training set), from
{0.05, 0.1, 0.5, 1}.

F.1.1 Vanished Activations and Gradients

In Section 4.1.1 of the paper, we observe that the deeper
neural networks with orthogonal weight matrices are difficult
to train without scaling them by a factor of

√
2. We argue

the main reason for this is that the activation and gradient
are exponentially vanished. Here we provide the details.

We evaluate the mean absolute value of the activation:
σx =

�m
i=1

�d
j=1 |xij | for the layer-wise input x ∈ Rm×d,

and the mean absolute value of the gradient: σ ∂L
∂h

=�m
i=1

�n
j=1 |∂L∂h ij

| for the layer-wise gradient ∂L
∂h ∈ Rm×n.

Figure II show the results on the 20-layer MLP. ‘ONI-NS-
Init’ (‘ONI-NS-End’) indicates the ONI method without
scaling a factor of

√
2 during initialization (the end of train-

ing). We observe that ‘ONI-NS’ suffers from a vanished
activation and gradient during training. Our ‘ONI’ with a
scaling factor of

√
2 has no vanished gradient.

F.1.2 Effects of Groups

We further explore the group based orthogonalization
method [10] on ONI. We vary the group size G in
{16, 32, 64, 128, 256}, and show the results in Figure III.
We observe that our ONI can achieve slightly better perfor-
mance with an increasing group size. The main reason for

0 20 40 60
Epochs

0

5

10

15

20

25

Tr
ai

n
er

ro
rs

G16
G32
G64
G128
G256

(a) Train Error

0 20 40 60
Epochs

10

15

20

Te
st

 e
rr

or
s

G16
G32
G64
G128
G256

(b) Test Error

Figure III. Effects of group size G in proposed ‘ONI’. We evaluate
the (a) training and (b) test errors on a 10-layer MLP.

this is that the group based orthogonalization cannot ensure
the whole weight matrix to be orthogonal.

F.2. CNNs on CIFAR10

We use the official training set of 50, 000 images and the
standard test set of 10, 000 images. The data preprocessing
and data augmentation follow the commonly used mean&std
normalization and flip translation, as described in [8].

F.2.1 VGG-Style Networks

Details of Network Architectures The network starts
with a convolutional layer of 32k filters, where k is the
varying width based on different configurations. We then
sequentially stack three blocks, each of which has g convo-
lutional layers, and the corresponding convolutional layers
have a filter numbers of 32k, 64k and 128k, respectively,
and feature maps sizes of 32 × 32, 16 × 16 and 8 × 8, re-
spectively. We use the first convolution in each block with
stride 2 to carry out spatial sub-sampling for feature maps.
The network ends with global average pooling and follows a
linear transformation. We vary the depth with g in {2, 3, 4}
and the width with k in {1, 2, 3}.

Experimental Setup We use SGD with a momentum of
0.9 and batch size of 128. The best initial learning rate
is chosen from {0.01, 0.02, 0.05} over the validation set
of 5,000 samples from the training set, and we divide the
learning rate by 5 at 80 and 120 epochs, ending the training at
160 epochs. For ‘OrthReg’, we report the best results using a
regularization coefficient λ in {0.0001, 0.0005}. For ‘OLM’,
we use the group size of G = 64 and full orthogonalization,
and report the best result.

Training Performance In Section 4.1.2 of the paper, we
mention ‘ONI’ and ‘OLM-

√
2’ converge faster than other

baselines, in terms of training epochs. Figure IV shows the
training curves under different configurations (depth and
width). It’s clear that ‘ONI’ and ‘OLM-

√
2’ converge faster

than other baselines under all network configurations, in
terms of training epochs. The results support our conclusion
that maintaining orthogonality can benefit optimization.

0 50 100 150
Epochs

0

10

20

30

40
Tr

ai
n

er
ro

r

plain
OrthInit
OrthReg
WN
OLM-G64
SONI

(a) g=2, k=1

0 50 100 150
Epochs

0

10

20

30

40

Tr
ai

n
er

ro
r

plain
OrthInit
OrthReg
WN
OLM-G64
ONI

(b) g=2, k=2

0 50 100 150
Epochs

0

10

20

30

40

Tr
ai

n
er

ro
r

plain
OrthInit
OrthReg
WN
OLM-G64
ONI

(c) g=2, k=3

0 50 100 150
Epochs

0

10

20

30

40

Tr
ai

n
er

ro
r

plain
OrthInit
OrthReg
WN
OLM-G64
ONI

(d) g=3, k=1

0 50 100 150
Epochs

0

10

20

30

40

Tr
ai

n
er

ro
r

plain
OrthInit
OrthReg
WN
OLM-G64
ONI

(e) g=3, k=2

0 50 100 150
Epochs

0

10

20

30

40

Tr
ai

n
er

ro
r

plain
OrthInit
OrthReg
WN
OLM-G64
ONI

(f) g=3, k=3

0 50 100 150
Epochs

0

10

20

30

40

Tr
ai

n
er

ro
r

plain
OrthInit
OrthReg
WN
OLM-G64
ONI

(g) g=4, k=1

0 50 100 150
Epochs

0

10

20

30

40

Tr
ai

n
er

ro
r

plain
OrthInit
OrthReg
WN
OLM-G64
ONI

(h) g=4, k=2

0 50 100 150
Epochs

0

10

20

30

40

Tr
ai

n
er

ro
r

plain
OrthInit
OrthReg
WN
OLM-G64
ONI

(i) g=4, k=3

Figure IV. Comparison of training errors on VGG-style networks for CIFAR-10 image classification. From (a) to (i), we vary the depth
3g + 2 and width 32k, with g ∈ {2, 3, 4} and k ∈ {1, 2, 3}.

F.2.2 Residual Network without Batch Normalization

Here we provide the details of the experimental setups and
training performance of the experiments on a 110-layer resid-
ual network [8] without batch normalization (BN) [12], de-
scribed in Section 4.1.2 of the paper.

Experimental Setups We run the experiments on one
GPU. We apply SGD with a batch size of 128, a momen-
tum of 0.9 and a weight decay of 0.0001. We set the initial
learning rate to 0.1 by default, and divide it by 10 at 80
and 120 epochs, and terminate the training at 160 epochs.
For Xavier Init [5, 1], we search the initial learning rate
from {0.1, 0.01, 0.001} and report the best result. For group
normalization (GN) [23], we search the group size from
{64, 32, 16} and report the best result. For our ONI, we use
the data-dependent initialization methods used in [21] to
initial the learnable scale parameters.

For small batch size experiments, we train the network
with an initial learning rate following the linear learning rate
scaling rule [7], to adapt the batch size.

Training Performance Figure V (a) and (b) show the
training curve and test curve respectively. We observe that

0 50 100 150
Epochs

0

20

40

60

Tr
ai

n
er

ro
r

w/BN
GN
ONI

(a) train error

0 50 100 150
Epochs

0

20

40

60

Te
st

 e
rr

or

w/BN
GN
ONI

(b) test error

Figure V. Training performance comparison on 110-layer residual
network without batch normalization for CIFAR-10 dataset. ‘w/BN’
indicates with BN. We show the (a) training error with respect to
the epochs and (b) test error with respect to epochs.

‘ONI’ converges significantly faster than ‘BN’ and ‘GN’, in
terms of training epochs.

F.3. Details of Experimental Setup on ImageNet

ImageNet-2012 consists of 1.28M images from 1,000
classes [19]. We use the official 1.28M labeled images pro-
vided for training and evaluate the top-1 and top-5 test clas-
sification errors on the validation set, with 50k images.

We keep almost all the experimental settings the same
as the publicly available PyTorch implementation [18]: we
apply SGD with a momentum of 0.9, and a weight decay of
0.0001; We train over 100 epochs in total and set the initial
learning rate to 0.1, lowering it by a factor of 10 at epochs
30, 60 and 90. For ‘WN’ and ‘ONI’, we don’t us weight
decay on the learnable scalar parameters.

VGG Network We run the experiments on one GPU, with
a batch size of 128. Apart from our ’ONI’, all other methods
(‘plain’, ‘WN’, ‘OrthInit’ and ‘OrthReg’) suffer from diffi-
culty in training with a large learning rate of 0.1. We thus run
the experiments with initial learning rates of {0.01, 0.05}
for these, and report the best result.

Residual Network We run the experiments on one GPU
for the 18- and 50-layer residual network, and two GPUs
for the 101-layer residual network. We use a batch size of
256. Considering that ‘ONI’ can improve the optimization
efficiency, as shown in the ablation study on ResNet-18, we
run the 50- and 101-layer residual network with a weight
decay of {0.0001, 0.0002} and report the best result from
these two configurations for each method, for a more fair
comparison.

F.4. Ablation Study on Iteration Number

We provide the details of the training performance for
ONI on Fashion MNIST in Figure VI. We vary T , for a
range of 1 to 7, and show the training (Figure VI (a)) and
test (Figure VI (b)) errors with respect to the training epochs.
We also provide the distribution of the singular values of
the orthogonalized weight matrix W, using our ONI with
different iteration numbers T . Figure VI (c) shows the results
from the first layer, at the 200th iteration. We also obtain
similar observations for other layers.

G. Details on Training GANs

For completeness, we provide descriptions of the main
concepts used in the paper, as follows.

Inception score (IS) Inception score (IS) (the higher the
better) was introduced by Salimans et al. [20]:

ID = exp(ED[KL(p(y|x)�p(y))]), (25)

where KL(·�·) denotes the Kullback-Leibler Divergence,
p(y) is approximated by 1

N

�N
i=1 p(y|xi) and p(y|xi) is the

trained Inception model [22]. Salimans et al. [20] reported
that this score is highly correlated with subjective human
judgment of image quality. Following [20] and [16], we
calculate the score for 5000 randomly generated examples
from each trained generator to evaluate IS. We repeat 10
times and report the average and the standard deviation of
IS.

0 20 40 60
Epochs

0

10

20

30

40

Tr
ai

n
er

ro
rs

T1
T2
T3
T4
T5
T6
T7

(a) Train Error

0 20 40 60
Epochs

10

20

30

40

Te
st

 e
rr

or
s

T1
T2
T3
T4
T5
T6
T7

(b) Test Error

0 50 100 150 200 250
Index of singular values

0

0.2

0.4

0.6

0.8

1

S
in

gu
la

r v
al

ue
s

T1

T2

T3

T4

T5

T6

T7

(c) Distribution of Singular Values

Figure VI. Effects of the iteration number T in proposed ‘ONI’.
We evaluate the training errors on a 10-layer MLP. We show (a)
the training errors; (b) the test errors and (c) the distribution of the
singular values of the orthogonalized weight matrix W from the
first layer, at the 200th iteration.

Fréchet Inception Distance (FID) [9] Fréchet inception
distance (FID) [9] (the lower the better) is another measure
for the quality of the generated examples that uses second-
order information from the final layer of the inception model
applied to the examples. The Fréchet distance itself is a
2-Wasserstein distance between two distributions p1 and p2,
assuming they are both multivariate Gaussian distributions:

F (p1, p2) = �µp1 − µp2�22 + tr(Cp1 + Cp2 − 2(Cp1Cp2)
1
2), (26)

where {µp1 , Cp1}, {µp2 , Cp2} are the mean and covariance
of samples from generated p1 and p2, respectively, and tr(·)
indicates the trace operation. We calculate the FID between
the 10K test examples (true distribution) and the 5K ran-
domly generated samples (generated distribution).

GAN with Non-saturating Loss The standard non-
saturating function for the adversarial loss is:

L(G,D) = Ex∼q(x)[logD(x)] + Ez∼p(z)[1− logD(G(z))], (27)

where q(x) is the distribution of the real data, z ∈ Rdz is
a latent variable, p(z) is the standard normal distribution
N(0, I), and G is a deterministic generator function. dz is
set to 128 for all experiments. Based on the suggestion in
[6, 16], we use the alternate cost −Ez∼p(z)[logD(G(z))] to
update G, while using the original cost defined in Eqn. 27
for updating D.

GAN with Hinge Loss The hinge loss for adversarial
learning is:

LD(Ĝ,D) = Ex∼q(x)[max(0, 1−D(x))]

+ Ez∼p(z)[max(0, 1 +D(G(z)))] (28)

LG(G, D̂) = −Ez∼p(z)D̂(G(z)) (29)

Setting α β1 β2 ndis

A 0.0001 0.5 0.9 5
B 0.0001 0.5 0.999 1
C 0.0002 0.5 0.999 1
D 0.001 0.5 0.9 5
E 0.001 0.5 0.999 5
F 0.001 0.9 0.999 5

Table C. Hyper-parameter settings in stability experiments on DC-
GAN, following [16].

0 50 100 150 200
Epochs

3.5

4

4.5

5

5.5

6

6.5

In
ce

pt
io

n
S

co
re

SN

ONI
T0

ONI
T1

ONI
T2

ONI
T3

ONI
T5

(a)
A B C D E F

5

5.5

6

6.5

In
ce

pt
io

n
S

co
re

SN
ONI

(b)

Figure VII. Comparison of SN and ONI on DCGAN. (a) The IS
with respect to training epochs. (b)The stability experiments on the
six configurations described in [16].

for the discriminator and the generator, respectively. This
type of loss has already been used in [14, 16, 24, 2].

Our code is implemented in PyTorch [18] and the trained
Inception model is from the official models in PyTorch [18].
The IS and FID for the real training data are 10.20 ± 0.13
and 3.07 respectively. Note that we do not use the learnable
scalar in any the GAN experiment, and set σ = 1 in ONI,
for more consistent comparisons with SN.

G.1. Experiments on DCGAN

The DCGAN architecture follows the configuration in
[16], and we provide the details in Table D for completeness.
The spectral normalizaiton (SN) and our ONI are only ap-
plied on the discriminator, following the experimental setup
in the SN paper [16].

Figure VII (a) shows the IS of SN and ONI when varying
Newton’s iteration number T from 0 to 5. We obtain the
same observation as the FID evaluation, shown in Section
4.2 of the paper.

As discussed in Section 4.2 the paper, we conduct exper-
iments to validate the stability of our proposed ONI under
different experimental configurations, following [16]. Ta-
ble C shows the corresponding configurations (denoted by
A-F) when varying the learning rate α, first momentum β1,
second momentum β2, and the number of updates of the
discriminator per update of the generator ndis. The results
evaluated by IS are shown in Figure VII (b). We observe
that our ONI is consistently better than SN under the IS
evaluation.

G.2. Implementation Details of ResNet-GAN

The ResNet architecture also follows the configuration in
[16], and we provide the details in Table E for completeness.

0 50 100 150 200
Epochs

5

5.5

6

6.5

7

In
ce

pt
io

n
S

co
re

SN
ONI

(a)

0 50 100 150 200
Epochs

5

5.5

6

6.5

7

In
ce

pt
io

n
S

co
re

SN
ONI

(b)

Figure VIII. Comparison of SN and ONI on ResNet GAN. We show
the IS with respect to training epochs using (a) the non-saturating
loss and (b) the hinge loss.

The SN and our ONI are only applied on the discriminator,
following the experimental setup in the SN paper [16].

We provide the results of SN and ONI in Figure VIII,
evaluated by IS.

G.3. Qualitative Results of GAN

We provide the generated images in Figure IX, X and XI.
Note that we don’t hand-pick the images, and show all the
results at the end of the training.

References
[1] Nils Bjorck, Carla P Gomes, Bart Selman, and Kilian Q

Weinberger. Understanding batch normalization. In NeurIPS.
2018. 6

[2] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large
scale GAN training for high fidelity natural image synthesis.
In ICLR, 2019. 8

[3] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch,
Jonathan Cohen, John Tran, Bryan Catanzaro, and Evan Shel-
hamer. cudnn: Efficient primitives for deep learning. CoRR,
abs/1410.0759, 2014. 3

[4] R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7: A
matlab-like environment for machine learning. In BigLearn,
NIPS Workshop, 2011. 3

[5] Xavier Glorot and Yoshua Bengio. Understanding the dif-
ficulty of training deep feedforward neural networks. In
AISTATS, 2010. 6

[6] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In NeurIPS.
2014. 7

[7] Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noord-
huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,
Yangqing Jia, and Kaiming He. Accurate, large minibatch
SGD: training imagenet in 1 hour. CoRR, abs/1706.02677,
2017. 6

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR, 2016.
5, 6

[9] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bern-
hard Nessler, and Sepp Hochreiter. Gans trained by a two
time-scale update rule converge to a local nash equilibrium.
In NeurIPS. 2017. 7

(a) Generator

z ∈ R128 ∼ N (0, I)

4× 4, stride=1 deconv. BN 512 ReLU → 4× 4× 512

4× 4, stride=2 deconv. BN 256 ReLU
4× 4, stride=2 deconv. BN 128 ReLU
4× 4, stride=2 deconv. BN 64 ReLU

3× 3, stride=1 conv. 3 Tanh

(b) Discriminator

RGB image x ∈ R32×32×3

3× 3, stride=1 conv 64 lReLU
4× 4, stride=2 conv 64 lReLU
3× 3, stride=1 conv 128 lReLU
4× 4, stride=2 conv 128 lReLU
3× 3, stride=1 conv 256 lReLU
4× 4, stride=2 conv 256 lReLU
3× 3, stride=1 conv 512 lReLU

dense → 1

Table D. DCGAN architectures for CIFAR10 dataset in our experiments. ‘lReLU‘ indicates the leaky ReLU [15] and its slope is set to 0.1.

(a) Generator

z ∈ R128 ∼ N (0, I)

dense, 4× 4× 128

ResBlock up 128
ResBlock up 128
ResBlock up 128

BN, ReLU, 3× 3 conv, 3 Tanh

(b) Discriminator

RGB image x ∈ R32×32×3

ResBlock down 128
ResBlock down 128

ResBlock 128
ResBlock 128

ReLU
Global sum pooling

dense → 1

Table E. ResNet architectures for CIFAR10 dataset in our experiments. We use the same ResBlock as the SN paper [16].

[10] Lei Huang, Xianglong Liu, Bo Lang, Adams Wei Yu,
Yongliang Wang, and Bo Li. Orthogonal weight normal-
ization: Solution to optimization over multiple dependent
stiefel manifolds in deep neural networks. In AAAI, 2018. 3,
5

[11] Lei Huang, Yi Zhou, Fan Zhu, Li Liu, and Ling Shao. Itera-
tive normalization: Beyond standardization towards efficient
whitening. In CVPR, 2019. 2

[12] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In ICML, 2015. 6

[13] Yann LeCun, Léon Bottou, Genevieve B. Orr, and Klaus-
Robert Müller. Effiicient backprop. In Neural Networks:
Tricks of the Trade, 1998. 5

[14] Jae Hyun Lim and Jong Chul Ye. Geometric gan. CoRR,
abs/1705.02894, 2017. 8

[15] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Recti-
fier nonlinearities improve neural network acoustic models.
In in ICML Workshop on Deep Learning for Audio, Speech
and Language Processing, 2013. 9

[16] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and
Yuichi Yoshida. Spectral normalization for generative adver-
sarial networks. In ICLR, 2018. 7, 8, 9, 10, 11

[17] Vinod Nair and Geoffrey E. Hinton. Rectified linear units
improve restricted boltzmann machines. In ICML, 2010. 5

[18] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-
ban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in PyTorch. In NeurIPS Autodiff Workshop,
2017. 7, 8

[19] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li
Fei-Fei. ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision (IJCV), 115(3):211–
252, 2015. 6

[20] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki
Cheung, Alec Radford, Xi Chen, and Xi Chen. Improved
techniques for training gans. In NeurIPS, 2016. 7

[21] Tim Salimans and Diederik P. Kingma. Weight normalization:
A simple reparameterization to accelerate training of deep
neural networks. In NeurIPS, 2016. 6

[22] C. Szegedy, Wei Liu, Yangqing Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. In CVPR, 2015. 7

[23] Yuxin Wu and Kaiming He. Group normalization. In ECCV,
2018. 6

[24] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus
Odena. Self-attention generative adversarial networks. In
ICML, 2019. 8

(a) T = 0 (b) T = 1 (c) T = 2

(d) T = 3 (e) T = 4 (f) T = 5

Figure IX. Generated images for CIFAR-10 by our ONI with different iterations, using DCGAN [16].

(a) SN-A (b) SN-B (c) SN-C

(d) ONI-A (e) ONI-B (f) ONI-C

Figure X. Generated images for CIFAR-10 by SN and ONI, using DCGAN [16]. We show the results of SN and ONI, with configuration A,
B and C.

(a) SN with non-satruating loss (b) SN with hinge loss

(c) ONI with non-satruating loss (d) ONI with hinge loss

Figure XI. Generated images for CIFAR-10 by SN and ONI, using ResNet [16]. We show the results of SN and ONI, with the non-satruating
and hinge loss.

