
Supplementary Material – OctSqueeze: Octree-Structured Entropy Model for
LiDAR Compression

Lila Huang1,2 Shenlong Wang2,3 Kelvin Wong2,3 Jerry Liu2 Raquel Urtasun2,3

1University of Waterloo 2Uber Advanced Technologies Group 3University of Toronto
{lila.huang,shenlong.wang,kelvin.wong,jerryl,urtasun}@uber.com

Abstract

In this supplementary material, we describe additional experimental results that further validate the efficacy of our pro-
posed method. We also benchmark the runtime of our proposed method and demonstrate its ability to encode LiDAR point
clouds in real-time. Moreover, we exhibit an extensive array of qualitative results on NorthAmerica and KITTI that compares
our method against Draco in terms of reconstruction quality and downstream task performance. Finally, we attach a video
that presents an overview of our approach and showcases the quality of our point cloud reconstructions.

1. Additional Ablation Studies
We conduct a more thorough analysis on our entropy model to validate our choice of model architecture and the feature

set we use. In Sec. 1.1, we show that our model performs best when using K = 4 levels of aggregation. Then, in Sec. 1.2,
we demonstrate that our model’s performance improvements arise as a result of our hierarchical feature aggregation scheme,
and not because of the increase in model capacity. Finally, in Sec. 1.3, we present an expanded ablation study on our input
feature set at the best level of aggregations; i.e., K = 4. All experiments are conducted on the NorthAmerica evaluation set.

1.1. Number of Aggregations

Bitrate
Aggregations Depth = 12 Depth = 14 Depth = 16

0 3.48 8.91 14.97
1 3.39 8.78 14.84
2 3.31 8.59 14.64
3 3.25 8.47 14.51
4 3.17 8.32 14.33
5 3.27 8.51 14.55

Table 1: Ablation study on the number of aggregations.

Tab. 1 extends Tab. 2 in the main paper with an additional row entry for K = 5 aggregations. We found that K = 5
aggregations performs worse than K = 4 in terms of bitrate reduction, suggesting that our choice of K = 4 aggregations in
the main paper is best for our architecture.

1.2. Aggregation of Parental Context Features

We also investigate whether a model that does not aggregate parental context features can achieve similar bitrate reductions
as our model with K = 4 aggregations, holding all else equal. To perform this study, we trained an entropy model with the
same architecture as our model with K = 4 aggregations, except that each node takes in a copy of its own context feature
in the aggregation stage, rather than that of its parent. Tab. 2 shows our results. Surprisingly, we found that not only did

1

Bitrate
Parental Aggregations K Depth = 12 Depth = 14 Depth = 16

0 3.48 8.91 14.97

4 3.47 8.92 14.98
X 4 3.17 8.32 14.33

Table 2: We compare the performance of our entropy model with and without aggregating parental context features (bottom two rows). Both models have
the same model capacity as one with K = 4 aggregations. For completeness, we also show the performance of our model with K = 0 aggregations.

the model without parental aggregation perform worse than the one with aggregation, it also performed only as well as our
original, smaller capacity model with K = 0 aggregations! This result suggests that adding more layers to the network
alone does not translate to performance gains. Moreover, it validates our design of a tree-structured entropy model that
progressively incorporates parental information through aggregations.

1.3. Input Context Features

Bitrate
L P O LL Depth = 12 Depth = 14 Depth = 16

X 3.86 9.79 15.91
X X 3.44 8.89 14.94
X X X 3.34 8.72 14.76
X X X X 3.17 8.32 14.33

Table 3: Ablation study on input context features for our model with K = 4 aggregations. L, P, O, and LL stand for the node’s octree level, its parent
occupancy symbol, its octant index, and its spatial location respectively.

We conduct an ablation study on the input context features used by our entropy model at K = 4 aggregations: the node’s
octree level, its parent occupancy symbol, its octant index, and its spatial location. Note that in Tab. 1 of the main paper,
we presented an analogous ablation study on a model with K = 0 aggregations. In Tab. 3, we observe a similar decrease in
bitrate as we increase the number of input context features. This result further corroborates our hypothesis that all four input
context features contribute to the predictive power of our entropy model.

2. Additional Baselines
We conduct experiments comparing our compression method with two additional baselines. In Sec. 2.1, we experiment

with a range view-based compression method that leverages the popular JPEG2000 image codec. Then in Sec. 2.2, we present
results from our experiments with the voxel-based point cloud compression algorithm by Quach et al. [2].

2.1. JPEG Range Encoder

We compare against two baselines that use a range image representation of the input point cloud: Deep Range and JPEG
Range. Deep Range is the range view-based method discussed in Sec. 4.2 of the main paper. In particular, given a LiDAR
point cloud, we first construct a range image by converting it from Euclidean coordinates to polar coordinates, and then
storing it as a 2.5D range image. Deep Range then uses a Ballé hyperprior model [1] to compress the 2.5D range image. In
contrast, JPEG Range uses the popular JPEG2000 image codec to compress the 2.5D range image.

As shown in Fig. 1, Deep Range outperforms JPEG Range across all reconstruction quality metrics on both NorthAmerica
and KITTI. This is a testament to the performance of deep learning-based methods for image compression. Moreover, as we
alluded to in Sec. 4.4 of the main paper, our approach significantly outperforms both Deep Range and JPEG Range owing to
its use of an octree data structure to represent the LiDAR point cloud and an octree-structured entropy model to compress it.

2.2. Deep Voxel Encoder

We additionally implemented the voxel-based point cloud compression algorithm by Quach et al. [2], consisting of a
deep 3D convolutional autoencoder architecture with a fully-factorized entropy model inspired from [1]. We trained and

0 5 10 15
Bits per Point (BPP)

20

30

40

50

60

70

80

Po
in

t t
o

Pl
an

e
PS

N
R

Bitrate vs PSNR (NorthAmerica)

JPEG Range
Deep Range
Ours

0 5 10 15
Bits per Point (BPP)

0.0

0.2

0.4

0.6

0.8

1.0

O
cc

up
an

cy
 IO

U
 (1

0c
m

)

Bitrate vs IOU (NorthAmerica)

JPEG Range
Deep Range
Ours

0 5 10 15
Bits per Point (BPP)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sy
m

m
et

ric
 C

ha
m

fe
r D

is
ta

nc
e

(m
)

Bitrate vs Chamfer Distance (NorthAmerica)

JPEG Range
Deep Range
Ours

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Bits per Point (BPP)

20

30

40

50

60

70

Po
in

t t
o

Pl
an

e
PS

N
R

Bitrate vs PSNR (KITTI)

JPEG Range
Deep Range
Ours

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Bits per Point (BPP)

0.0

0.2

0.4

0.6

0.8

1.0

O
cc

up
an

cy
 IO

U
 (1

0c
m

)

Bitrate vs IOU (KITTI)

JPEG Range
Deep Range
Ours

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Bits per Point (BPP)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Sy
m

m
et

ric
 C

ha
m

fe
r D

is
ta

nc
e

(m
)

Bitrate vs Chamfer Distance (KITTI)

JPEG Range
Deep Range
Ours

Figure 1: Quantitative results on NorthAmerica and KITTI. From left to right: point-to-plane PSNR, IOU, and Chamfer distance.

evaluated these models on the NorthAmerica LiDAR point cloud dataset, voxelizing points at (0.25m, 0.25m, 1.0m) for
length, width, and depth dimensions respectively. Our best-performing reference model achieves a point-to-plane PSNR of
33.76 at a bitrate of 26.81—this performs much worse than the tree-based methods of Draco (PSNR: 48.47, bpp: 2.778)
and our approach (PSNR: 48.95, bpp 1.61). The underperformance of the voxel-based compression method indicates that a
dense voxel representation may not be the best fit for compressing LiDAR point clouds due to the inherent sparsity and high
frequency information in this data.

3. Runtime

Encoding (ms) Decoding (ms)
Depth Octree Network Range Coding Total Total

10 14.49 7.47 0.62 22.58 53.31
11 21.10 13.85 0.80 35.75 59.53
12 23.73 24.67 1.18 49.58 95.01
13 25.51 39.82 2.19 67.52 138.81
14 32.34 56.04 3.15 91.53 140.78
15 34.85 65.17 3.55 103.57 147.89
16 35.52 66.83 3.61 105.96 150.74

Table 4: Runtime of our model with K = 4 aggregations (in milliseconds). ‘Depth’ is the maximum depth of the octree. ‘Octree’ is the time to build the
octree; ‘Network’ the time to run our entropy model; and ‘Range Coding’ the time of range coding.

We benchmarked our approach on a workstation with an Intel Xeon E5-2687W CPU and a Nvidia GeForce GTX 1080
GPU. See Tab. 4 for the results. In our experiments, octree building and range coding were implemented in C++, and our
entropy model was implemented in Python with PyTorch. Our approach achieves end-to-end encoding in real-time, meaning
that our algorithm can be deployed in an online setting. Moreover, our decoding speeds are quite fast as well; due to the
dependence of each node on ancestral nodes, we interleave range decoding and octree construction with GPU model forward
passes for each level.

4. Additional Qualitative Results
We exhibit an extensive array of qualitative results that compare our method against Draco across a spectrum of bitrates.

In Fig. 2 and 3, we show the reconstruction quality of our method versus Draco. Then, in Fig. 4 and 5, we show their
respective downstream semantic segmentation performance. Finally, in Fig. 6, we show their respective downstream object
detection performance. As indicated in these figures, our model can attain better results than Draco at comparable—or even
lower—bitrates.

We also showcase our method in the form of a video. In this video, we highlight a visual sequence of LiDAR point clouds
captured by a self-driving vehicle in the NorthAmerica dataset. We compare the Oracle (i.e., uncompressed point clouds)
and our reconstructions side-by-side, and note that our approach achieves high visual similarity to the original point cloud at
a much lower bitrate. Additionally, we also showcase semantic segmentation and object detection results produced using the
Oracle and our reconstructed point clouds. The outputs produced using our reconstructed point clouds are almost identical to
those produced using the Oracle, again validating the practicality of our compression method.

References
[1] Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin Hwang, and Nick Johnston. Variational image compression with a scale

hyperprior. In 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3,
2018, Conference Track Proceedings. OpenReview.net, 2018. 2

[2] Maurice Quach, Giuseppe Valenzise, and Frédéric Dufaux. Learning convolutional transforms for lossy point cloud geometry com-
pression. In 2019 IEEE International Conference on Image Processing, ICIP 2019, Taipei, Taiwan, September 22-25, 2019, pages
4320–4324. IEEE, 2019. 2

GT (NorthAmerica) Ours: PSNR 73.08, Bitrate: 12.23 Draco: PSNR 69.81, Bitrate: 12.41

GT (NorthAmerica) Ours: PSNR 68.42, Bitrate: 9.38 Draco: PSNR 67.59, Bitrate: 10.42

GT (NorthAmerica) Ours: PSNR 62.48, Bitrate: 7.49 Draco: PSNR 58.85, Bitrate: 7.55

GT (NorthAmerica) Ours: PSNR 71.94, Bitrate: 4.63 Draco: PSNR 71.03, Bitrate: 6.02

GT (NorthAmerica) Ours: PSNR 46.49, Bitrate: 2.66 Draco: PSNR 45.49, Bitrate: 3.95

GT (NorthAmerica) Ours: PSNR 48.61, Bitrate: 1.53 Draco: PSNR 47.28, Bitrate: 2.73

Figure 2: Qualitative results of reconstruction quality for NorthAmerica.

GT (KITTI) Ours: PSNR 65.29, Bitrate: 12.78 Draco: PSNR 62.46, Bitrate: 12.90

GT (KITTI) Ours: PSNR 69.99, Bitrate: 9.37 Draco: PSNR 66.64, Bitrate: 9.40

GT (KITTI) Ours: PSNR 57.59, Bitrate: 5.23 Draco: PSNR 53.42, Bitrate: 5.29

GT (KITTI) Ours: PSNR 52.41, Bitrate: 4.82 Draco: PSNR 48.00, Bitrate: 4.88

GT (KITTI) Ours: PSNR 55.06, Bitrate: 2.41 Draco: PSNR 50.24, Bitrate: 2.75

GT (KITTI) Ours: PSNR 43.67, Bitrate: 1.52 Draco: PSNR 39.09, Bitrate: 2.04

Figure 3: Qualitative results of reconstruction quality for KITTI.

Oracle: IOU 40.86, Bitrate: 96.00 Ours: IOU 39.10, Bitrate: 13.37 Draco: IOU 38.98, Bitrate: 15.63

Oracle: IOU 38.39, Bitrate: 96.00 Ours: IOU 36.70, Bitrate: 10.37 Draco: IOU 35.61, Bitrate: 12.70

Oracle: IOU 35.52, Bitrate: 96.00 Ours: IOU 35.75, Bitrate: 6.87 Draco: IOU 35.08, Bitrate: 9.30

Oracle: IOU 39.41, Bitrate: 96.00 Ours: IOU 29.92, Bitrate: 4.70 Draco: IOU 23.23, Bitrate: 4.70

Oracle: IOU 35.20, Bitrate: 96.00 Ours: IOU 26.38, Bitrate: 2.56 Draco: IOU 21.02, Bitrate: 2.67

Oracle: IOU 34.81, Bitrate: 96.00 Ours: IOU 23.04, Bitrate: 1.62 Draco: IOU 18.55, Bitrate: 1.96

Figure 4: Qualitative results of semantic segmentation for KITTI. IOU is averaged over all classes.

Oracle: IOU 99.55, Bitrate: 96.00 Ours: IOU 96.77, Bitrate: 14.87 Draco: IOU 95.64, Bitrate: 16.46

Oracle: IOU 97.21, Bitrate: 96.00 Ours: IOU 92.50, Bitrate: 11.68 Draco: IOU 91.28, Bitrate: 12.95

j

Oracle: IOU 98.09, Bitrate: 96.00 Ours: IOU 86.44, Bitrate: 8.62 Draco: IOU 82.93, Bitrate: 10.21

Oracle: IOU 98.01, Bitrate: 96.00 Ours: IOU 81.95, Bitrate: 5.52 Draco: IOU 80.61, Bitrate: 6.99

Oracle: IOU 92.31, Bitrate: 96.00 Ours: IOU 58.62, Bitrate: 2.67 Draco: IOU 57.18, Bitrate: 3.99

Oracle: IOU 95.53, Bitrate: 96.00 Ours: IOU 30.87, Bitrate: 1.78 Draco: IOU 25.28, Bitrate: 2.90

Figure 5: Qualitative results of semantic segmentation for NorthAmerica. IOU is averaged over all classes.

Oracle: AP: 93.02, Bitrate: 96.00 Ours: AP: 93.00, Bitrate: 14.64 Draco: AP: 92.78, Bitrate: 18.87

Oracle: AP: 88.49, Bitrate: 96.00 Ours: AP: 88.06, Bitrate: 10.72 Draco: AP: 88.27, Bitrate: 11.97

Oracle: AP: 87.85, Bitrate: 96.00 Ours: AP: 87.50, Bitrate: 8.52 Draco: AP: 86.95, Bitrate: 10.16

Oracle: AP: 89.79, Bitrate: 96.00 Ours: AP: 89.39, Bitrate: 5.51 Draco: AP: 89.26, Bitrate: 6.94

Oracle: AP: 86.71, Bitrate: 96.00 Ours: AP: 86.17, Bitrate: 3.39 Draco: AP: 85.27, Bitrate: 5.00

Oracle: AP: 88.08, Bitrate: 96.00 Ours: AP: 87.30, Bitrate: 1.39 Draco: AP: 83.80, Bitrate: 2.42

Figure 6: Qualitative results of object detection for NorthAmerica. AP is averaged over vehicle, motorbike, and pedestrian classes.

