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1. Discussions on Overlapped Stacking
Based on the representation of the event stream stacked

over time in Fig. 3 of the main paper, we are able to change
the amount of overlap for stacking. This is demonstrated
in Fig. 1 where the location of APS frames are shown and
events cover different amount of the stream over time as
stacks based on how fast the events are fired which is re-
lated to the camera or scene speed movement. This means
that the size of the colored stacks or the overlaps are not
necessarily equal to each other. Two stacks can have com-
mon events up to a single event but less common events are
desired to produce meaningful different images.

Unlike stacking based on time (SBT), stacking based on
number of events (SBN) can consume different amount of
time per stack which is related to the amount of events trig-
gered from the scene. Furthermore, a stack might even sur-
pass the location of the previous or next APS frame location
and is not bound to the APS. This overlap is useful when
there is large amount of scene movement and can prevent
short-time fired events from being less effective by having
them in more than one stack over the total number of stacks.

2. Design Parameters for SRNet

We illustrate the detailed design of our main super reso-
lution network, the SRNet, in Fig. 2. The text in each box
indicates layer type, number of filters, kernel size, stride and
padding respectively (e.g., Conv 64/3/1/1). The projection-
wise setting of the recurrent residual modules follows the
well-known iterative procedure for super-resolving multiple
LR features called back-projection [3]. We adopt the idea
to design our SRNet; more specifically RNet-B performs
back-projection from REm+n to Staten for producing the
residual RNetB(en).

3. The Synthetic Dataset
3.1. Background

We create a dataset using the event camera simulator
(ESIM) [6] for high quality GT as many real world datasets

Figure 1. Stacking with separate stacks (SS) or with overlapping
Stacks (OS) in a sequence of 3S. APS frame locations are shown
as dark gray diamonds. Light gray diamonds show the location of
virtual APS frames which are used in testing and do not respond
to an actual APS frame. Central stack is shown as Stack0 and
the next (+) or previous (−) stacks with regards to the central
stack are also shown. The yellow part shows the amount of shared
overlapping events (L1 and L2). Note that the amount of events
sets the length of the stack in time which will not necessarily be
the same from one stack or overlapping region to another.

have following issues, making the evaluation less reliable.

Imperfect APS frame as groundtruth (GT). The event
camera needs movements of the scene or the camera to pro-
duce outputs but rapid movements create motion blur on the
intensity image. In addition, the dynamic range of an event
camera and an intensity camera are much different which
one device might sense parts of the scene that the other
device does not. The combination of these factors makes
real-world sensing devices prone to errors when used as the
training source.
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Figure 2. SRNet in detail components. Colors following Fig. 4 of main paper.

Lack of high resolution GT. When working with the
same resolution intensity and event device for creating low
resolution (LR) event and high resolution (HR) intensity
pairs, one might think of resizing the event data to a smaller
value. This might work on the training set but when gener-
alizing to the test set that does not have such resized inputs
such as the original events of the event camera, the outputs
will have much lower quality. The reason behind it is that
subsampling algorithms leave unwanted traces on the event
stack. This artifacts might seem negligible, but in a learning
based solution, it leads to learning erroneous parameters. In
our experiments, subsampling the events resulted in a drop
of almost 2dB in terms of PSNR. This is a crucial step to
reach higher quality outputs for cross evaluating on other
datasets which we set as a goal.

As a remedy, we utilize a pair of synthetic cameras with
different resolutions. We set the LR (event) camera has
128×128 pixels resolution and the HR intensity camera has
256×256 or 512×512 pixels based on the upscale factor (2×
or 4×), both sharing the same camera center. To have ex-
actly the same filed of view in both cameras without fur-
ther warping requirements, the focal length is multiplied to
the desired upscale factor when moving from the LR event
camera to the HR GT intensity camera.

3.2. Dataset Detail

We created our dataset using 1, 000 different images
from the Microsoft COCO 2017 unlabeled images [4]
placed on a planar surface while moving the cameras in 6-
DoF on top using random trajectories and created almost
120K sequences of stacks. Different cameras can have
different threshold values, therefore we randomly set the
positive and negative threshold independently for each se-
quence to prevent the network from adapting to this param-
eter therefore being versatile to the input source all follow-
ing the implementation details of [7]. Although we train
our network only with the simulated dataset, we can fully

transfer to real-world scenes without any fine tuning in a
complete blind dataset transfer setting.

4. Additional Qualitative Results

Comparison to the State of The Arts. We present more
results on real-world and simulated sequences in Fig. 3, 4
and 5.

Results on dataset [7]. Furthermore, we used the new
dataset in [7] with includes challenging sequences with high
dynamic range and in high-speed scenarios. We showcase
a sample in the high speed scenario of popping a water bal-
loon over time in Fig. 14. Our method is able to reconstruct
super-resolved details from the background scene and the
fast moving foreground objects.

5. Failure Mode Anlaysis

Since the largest number of stacks in a sequence we use
was 7 (in S7), we are not able to recover the farther events
over the 7 stacks due to limited GPU resources. Therefore,
our algorithm may miss some background detail when fast
foreground moving objects fire large amount of events that
make the stacking exceed the 7 stacks. Fig 13 demonstrates
a sample condition shown in a sequential manner over time.

Furthermore, if the events in a stream are noisy or dead
pixels exist our method will create blurry artifacts in the
presentation of those events. Parts of the stream used in
Fig. 8 suffer from blurry artifacts. The final reconstruction
artifacts are attributed to the lack of events when the camera
movement is parallel to the scene structure, therefore events
will not fire as shown in Fig. 9. This artifact is often found
in many reconstruction methods based on pure events.
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Figure 3. Additional comparison between EV, EG and our results on sequences from [1] (In addition to the Fig. 5 of main manuscript).

EV EV+SR 2× Ours 2× APS

Figure 4. Additional comparison between direct event to SR intensity (ours) and event to image to SR intensity in a hierarchical manner
(EV+MISR) on simulated sequences. (In addition to the Fig. 5 of main manuscript)

EV EV 2× Ours 2× APS

Figure 5. Intensity reconstruction in the presence of background noise from far away objects. (In addition to the Fig. 7 of main manuscript)
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Figure 6. Expressing the robustness of our intensity image reconstruction in challenging scenes. When testing on diverse indoor and outdoor
scenes with different lighting conditions and extreme HDR scenarios [9, 10, 5], our method synthesizes more details while producing less
artifacts in comparison to EV and the APS. Please zoom in and compare the suggested regions.

6. Details of The Extensions with More Results

6.1. Complimentary

The Complementary extension uses the available APS
frame and the events together to make a higher resolution
intensity image by fusing the best from both sources. The
training process, described in the main manuscript, is shown
for seven stacks in a sequence (S7) in the green section

of Fig. 7. The central stack is highlighted in the middle
(SBN3). The complimentary training also follows the same
process but instead of events as a central stack it has the low
resolution version of the GT. Each previous or next stack
will be fused with the LR GT (APS) and fed to the network.
At inference, each event frame will add further HR details
to the LR APS frame creating a super-resolved high quality
output. Further results are shown in Fig. 10 and Fig. 11.



Figure 7. Main and complimentary (Comp.) scheme with S7 stacks in a sequence. The central stack is highlighted in the middle and all
other stacks will be compared to this stack fore optical flow creation. By putting the main network’s output from pure events as a LR input
(central stack) for the Comp. network we can have the Duo-Pass network which can add more details to the original intensity image.

Events Reconstruction APS

Figure 8. Foggy edges in the presence of noisy events.
Events Reconstruction APS

Figure 9. Blur artifact due to lack of events.

There are two downsides of the Complementary approach;
(1) we can only reach up to the frame rate of the APS since
we use the APS frames, (2) if the LR APS is noisy and
blurry, this artifacts will be propagated to the output image.

6.2. Duo-Pass

To avoid the downsides of the Complementary but obtain
better quality output, we utilize the output of our method
as the LR images in the complimentary extension, we can
solve the noise and blur propagation and remove the frame-
rate limitation. As shown in Fig. 7, we just place the central
stack (or frame) of the complementary method with the syn-
thesised intensity image of our main method. We call this
method a Duo-Pass and compare with Complementary and
our original method in Fig. 10.

7. Additional Analysis on the Effect of Number
of Events Per Stack

The number of events in each stack affects the output
reconstruction as shown in Fig. 12. When the number of
event are around 5, 000 events for image sizes of 240×180,
the output is generally in a reasonable quality. However,

adding much more events creates shadow-like outputs or
blurred regions. Having much less events results in faded
regions due to lack of information. Depending on the scene
complexity, more or less events will be required for the best
quality result.

To prevent overridden events in cases that the shapes on
bottom last row, we stop adding events to the stack if a spe-
cific pixel gets overwritten more than 50 times and continue
with the next stack in the sequence. This is the general pro-
cess while hand-tuning this number might get better results
for specific cases.

These examples further show that the APS frame is not
a good reference for comparing the reconstruction of events
in terms of low dynamic range, motion blur and locations
where events exist and there is no intensity details corre-
sponding to it (e.g., in Fig 1 of the main manuscript under
the table in the 3rd row) or locations where image details
exist but no events have fired (tape and paper detailed areas
around the shapes in the last row).

8. Additional Analysis on the Effect of using
Optical Flow by FNet

Stacking events by definition causes loss of temporal re-
lations among events. To recover that loss, we utilize FNet
in our design by employing optical flow by following re-
cent MISR techniques for inter-relating images over a se-
quences [8, 2]. In order to show the usefulness of optical
flow on our intensity reconstruction, we ablate its effect by
removing it and summarize the results in Table 1. The base
network is design for 4× scale and 3S stacks with `1 norm
only as the optimization criterion. As shown in the table,
without FNet the performances are noticeably decreased
in all metrics.

9. Computational Complexity in Time
The average run-time to super resolve an image

with the scaling factor of (2×, 4×) from the input
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Figure 10. More results of our main and extension methods of double passing (Duo-pass) and complementary processing (Comp.) on
real-world dataset [5]. Regions in the colored boxes are zoomed 20× for comparison. APS frames that where very dark are histogram
equalized for visualization only. High quality outputs can be achieved when complementing APS frames and events.
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Figure 11. More results of our main and extension methods of double passing (Duo-pass) and complementary processing (Comp.) on
real-world dataset [5]. Regions in the colored boxes are zoomed 20× for comparison. APS frames that where very dark are histogram
equalized for visualization only. High quality outputs can be achieved when complementing APS frames and events.
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Figure 12. Effect of the number of events on reconstruction quality. APS frame shown is for reference.

Table 1. Ablating the existence of FNet. Adding FNet to `1 im-
proves all metrics. In the main paper all experiments included
FNet and all ablations where performed using 4× scale and 3
stacks (3S).

Similarity PSNR (↑) SSIM (↑) MSE (↓) LPIPS (↓)
without FNet 14.97 0.505 0.036 0.499

with FNet 15.33 0.517 0.034 0.485

event stacks with the dimension of 180×240×3 hold-
ing 5,000 events per stack on a single Titan-Xp GPU,
is: {(3S, 2×),(3S, 4×),(7S, 2×),(7S, 4×)}→{18.5, 19.4,
250.8, 450.9} (ms) where 3S and 7S refer to the number
of stacks (3 and 7, respectively) in each sequence.
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Figure 13. Forgetting background details with SBN in rapid object movement.
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Figure 14. A challenging high-speed scenario of popping a water balloon over time (t0 to t3). The intensity details are available in SR
dimensions. The background is well reconstructed and the fast moving foreground has been also reconstructed.

[10] Alex Zihao Zhu, Dinesh Thakur, Tolga Özaslan, Bernd
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