

Generalized Product Quantization Network for Semi-supervised Image Retrieval

- Supplementary Material -

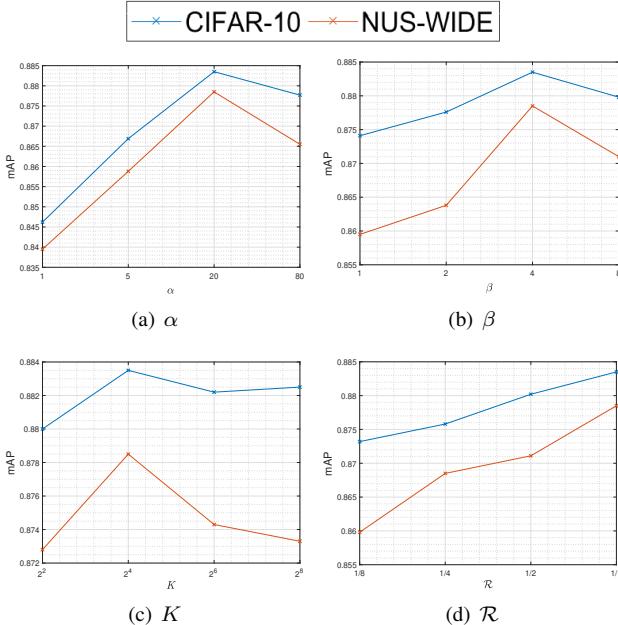


Figure 1. The results of hyper-parameter variants.

	Value			
α	1	5	20	80
β	1	2	4	8
K	2^2	2^4	2^6	2^8
R	1/8	1/4	1/2	1/1

Table 1. A list of Hyper-parameter values.

Analysis on Hyper-parameters As mentioned in section 4.2 of our original submission, we present additional information regarding hyper-parameters: α , β , and K . Besides, to see how GPQ actually uses unlabeled data, we set up a hyper-parameter R that determines the ratio of the total unlabeled data used for training. The default value is set as $\{\alpha, \beta, K, R\} = \{20, 4, 2^4, 1/1\}$ in order, and we vary each hyper-parameters as listed in Table 1 while fixing others at defaults. We conduct experiments on CIFAR-10 and NUS-WIDE datasets for the binary code of 48-bits.

From Figure 1, we can see that trends of mAP scores according to variation of α and K are similar to those observed in other deep quantization methods [1, 2]. The

hyper-parameter β that controls the randomness of predictions before applying softmax shows optimal performance at 4. The results of R related with the amount of unlabeled data justify that GPQ can fully utilize the unlabeled data to improve retrieval performance.

Algorithm We demonstrate our training process in Algorithm , where γ denotes learning rate. The result of entropy maximization and minimization can be observed in updating stage of θ_C and θ_F , respectively. Gradients generated from the unlabeled data in a batch do not flow directly into θ_Z , however, previous ones can be reflected by initializing θ_Z from θ_C .

Algorithm 1 GPQ training for batch size B

Input: Parameters of each component: $\theta_F, \theta_Z, \theta_C$
Input: Batch $\mathbf{B} = \{(I_1^L, y_1, I_1^U), \dots, (I_B^L, y_B, I_B^U)\}$

1: Initialize θ_Z with θ_C by soft assignment

2: **for** i in $1 \dots B$ **do**

3: $\hat{\mathbf{x}}_i^L, \hat{\mathbf{x}}_i^U \leftarrow F_{\theta_F}(I_i^L, I_i^U)$

4: $\hat{\mathbf{q}}_i^L \leftarrow Z_{\theta_Z}(\hat{\mathbf{x}}_i^L)$

5: $\hat{\mathbf{p}}_i^L, \hat{\mathbf{p}}_i^U \leftarrow C_{\theta_C}(\hat{\mathbf{x}}_i^L, \hat{\mathbf{x}}_i^U)$

6: **end for**

7: **if** label=**true** **then**

8: $\ell_{N-PQ} \leftarrow \mathcal{L}_{N-PQ}$ with $\{\hat{\mathbf{x}}_i^L, \hat{\mathbf{q}}_i^L, y_i\}_{i=1}^B$

9: $\ell_{cls} \leftarrow \mathcal{L}_{cls}$ with $\{\hat{\mathbf{p}}_i^L, y_i\}_{i=1}^B$

10: **else**

11: $\ell_{SEM} \leftarrow \mathcal{L}_{SEM}$ with $\{\hat{\mathbf{p}}_i^U\}_{i=1}^B$

12: **end if**

13: $\theta_F \leftarrow \theta_F - \gamma \left(\frac{\partial \ell_{N-PQ}}{\partial \theta_F} + \frac{\partial \ell_{cls}}{\partial \theta_F} + \frac{\partial \ell_{SEM}}{\partial \theta_F} \right)$

14: $\theta_Z \leftarrow \theta_Z - \gamma \frac{\partial \ell_{N-PQ}}{\partial \theta_Z}$

15: $\theta_C \leftarrow \theta_C - \gamma \left(\frac{\partial \ell_{cls}}{\partial \theta_C} - \frac{\partial \ell_{SEM}}{\partial \theta_C} \right)$

Output: Updated $\theta_F, \theta_Z, \theta_C$

References

- [1] Benjamin Klein and Lior Wolf. End-to-end supervised product quantization for image search and retrieval. In *CVPR*, pages 5041–5050, 2019. 1
- [2] Tan Yu, Junsong Yuan, Chen Fang, and Hailin Jin. Product quantization network for fast image retrieval. In *ECCV*, pages 186–201, 2018. 1