
Embedding Expansion: Augmentation in Embedding Space
for Deep Metric Learning

Supplementary Material

A. Introduction
This supplementary material provides more details of the

proposed embedding expansion (EE). First, we compare the
proposed method with mixup augmentation techniques and
compare the generation methods between EE and mixup.
Then, we show the visualization of the embedding space to
see the effect of the proposed method. Finally, we investi-
gate the impact of network capacity to see if the proposed
method works for different sizes of models.

B. Comparison with MixUp
Early works of mixup [10, 7] propose a data augmenta-

tion method by combining two input samples, where the
ground truth label of the combined sample is given by
the mixture of one-hot labels. By doing so, it improves
the generalization of the neural network by regularizing
the network to behave linearly in-between training sam-
ples. While those mixup methods work in the input space,
manifold mixup [8] performs linear combinations of hid-
den representations of training samples in the representa-
tion space. It also improves the generalization of the neural
network by perturbing the hidden representations, similar to
dropout [6], batch normalization [4], and information bot-
tleneck [1]. In the representative input mixup [10, 7], gen-
erating virtual feature-target vectors (x̃, ỹ) is formulated as:

x̃ = λxi + (1− λ)xj , (i)
ỹ = λyi + (1− λ)yj , (ii)

where (xi, yi) and (xj , yj) are two feature-target vectors
from the training data, λ ∼ Beta(α, α) for α ∈ (0,∞),
and λ ∈ [0, 1].

The proposed embedding expansion has similarity with
the mixup techniques, where both methods generate virtual
feature vectors by combining two original feature vectors
for augmentation. However, both methods have major dif-
ferences in four points: (i) The proposed embedding expan-
sion is for pair-based metric learning losses, whereas the
mixup is for softmax loss and its variants. The mixup can
not be used with pair-based metric learning losses because
most of the pair-based metric learning losses require ob-
vious class labels and can not exploit the mixture of one-

(a) ID with n = 2

(b) ID with n = 8

(c) BD with α = 0.2

(d) BD with α = 0.4

(e) BD with α = 1.0

(f) BD with α = 1.5

(g) BD with α = 2.0

Figure A. A visualization of the locational generation ratio
between an original pair (xi and xj) from the same class
with two different generation methods: the proposed inter-
nally dividing (ID) points into n + 1 equal parts and beta
distribution (BD) with α parameter.

hot labels. (ii) The proposed method generates synthetic
points in-between a pair from the same class, which are in-
ternally dividing points into n + 1 equal parts, while the
mixup uses mixing coefficient λ sampling from beta dis-
tribution and generates virtual feature vectors in-between a
pair from the different class. (iii) The proposed method ex-
ploits the output embedding feature points from a network,
while the mixup techniques use feature vectors from the in-
put or hidden representation of a network. (iv) After gener-

i



Method n α R@1
Baseline 0 - 60.3
EE (ID) 2 - 71.6

EE (BD) 2

0.2 66.7
0.4 59.6
1.0 56.5
1.5 55.1
2.0 53.8

EE (ID) 8 - 71.2

EE (BD) 8

0.2 61.5
0.4 58.1
1.0 54.3
1.5 54.5
2.0 53.9

Table A. Performance (%) comparison among baseline, EE
(ID), and EE (BD) with HPHN triplet trained on CARS196.
We generate n synthetic points by using the proposed inter-
nally dividing points into n+ 1 equal parts for EE (ID) and
beta distribution with α parameter for EE (BD).

ating synthetic points, the proposed method performs hard
negative pair mining to select the most informative feature
points among original and synthetic points.

B.1. Generation with Beta Distribution

The proposed EE generates synthetic points between a
pair, which are internally dividing points into n + 1 equal
parts. The synthetic points will be generated on the deter-
ministic locations, as illustrated in Figure Aa and Ab. On
the other hand, it is possible to generate synthetic points
by using the beta distribution as Equation i of mixup. This
will generates synthetic points on the stochastic locations.
Smaller α values generates synthetic points nearby the orig-
inal points (Figure Ac and Ad) and larger α values gener-
ates synthetic points around middle of the pair (Figure Af
and Ag), while α = 1.0 is equal to the uniform distribution
(Figure Ae).

To compare these two generation methods, we conduct
an experiment by generating n synthetic points with these
generation methods and use the same hard negative pair
mining as proposed EE. We use triplet loss with hard pos-
itive and hard negative (HPHN) mining [3, 9], trained with
CARS196 dataset. As shown in Table A, methods of EE
(BD) with α = 0.2 outperform the baseline model, while
larger α decreases the performance. It indicates that the
stochastic generation between a pair can be distractive for
the training, except for the synthetic points which are close
and similar to the original points. Meanwhile, the proposed
EE (ID) shows better performance than the baseline and the
EE (BD), which shows that the deterministic generation is
more stable and effective.

C. Visualization of Embedding Space

In order to see the process of clustering during training,
we visualize the embedding space of certain training epochs
with the Barnes-Hut t-SNE [5]. We use HPHN triplet loss
in Figure B and its combination of EE in Figure C, trained
with CARS196 dataset. For each model, we visualize the
embedding of the train data with different colors for differ-
ent classes, and the joint embedding of the train and test
data to highlight where the test data is embedded compared
to train data.

At the beginning of the training, the train and the test set
of both triplet and EE + triplet are scattered without forming
any discriminative clusters (Figure Ba, Bd, Ca, and Cd). In
the middle of the training at 1000 epoch, the train set of EE
+ triplet starts having clusters (Figure Cb) and the test set
are less scattered than the 10 epoch (Figure Ce), while the
train set of triplet also starts having clusters with less inter-
class variation than EE + triplet (Figure Bb). At the end of
the training at 3000 epoch, the train set of EE + triplet has
more discriminative clusters with larger inter-class varia-
tion, compared to the triplet embedding (Figure Bc and Cc).
The test set of EE + triplet are less spread out and forming
some clusters compared to the triplet embedding (Figure Cf
and Bf). Overall, the combination of triplet loss and the pro-
posed method has shown a better clustering ability than the
sole triplet loss. Entire visualization of the training process
can be found in the supplementary video1.

D. Impact of Network Capacity

In order to see the impact of network capacity on
the proposed method, we conduct an experiment by dif-
ferentiating the network capacity and the number of
synthetic points. We used one of the most generally
used ResNet50 v1 [2] and its smaller capacity variants
(ResNet18 v1 and ResNet34 v1). Moreover, we com-
pare the proposed method with the hard triplet genera-
tion (HTG) [11] method on the same network capacity of
ResNet18 v1. Throughout the experiment, we use HPHN
triplet and its combination with the proposed method on
CUB200-2011 (CUB200), CARS196, and stanford online
products (SOP) datasets.

As shown in the Table B, the proposed method achieves
around 1% to 3% of performance boost for every network
and dataset. We observe that there are the best number
of synthetic points n for each dataset, such as n = 8 for
CUB200, n = 4 for CARS196, and n = 2 for SOP. In
comparison with HTG, even though it uses a combination
of no-bias softmax and triplet loss, and a generative adver-
sarial network for sample generation, the proposed method
outperforms for every dataset.

1https://youtu.be/5msMSXyQZ5U

ii

https://youtu.be/5msMSXyQZ5U


(a) Train, 10 epoch (b) Train, 1000 epoch (c) Train, 3000 epoch

(d) Train + test, 10 epoch (e) Train + test, 1000 epoch (f) Train + test, 3000 epoch

Figure B. A t-SNE visualization of triplet loss with CARS196 dataset. (a), (b), and (c) are the embedding of the train data,
while (d), (e), and (f) are the joint embedding of the train (red) and the test (blue) data at each epoch.

(a) Train, 10 epoch (b) Train, 1000 epoch (c) Train, 3000 epoch

(d) Train + test, 10 epoch (e) Train + test, 1000 epoch (f) Train + test, 3000 epoch

Figure C. A t-SNE visualization of EE + triplet loss with CARS196 dataset. (a), (b), and (c) are the embedding of the train
data, while (d), (e), and (f) are the joint embedding of the train (red) and the test (blue) data at each epoch.

iii



Method Network n CUB200 CARS196 SOP
R@1 R@2 R@4 R@8 R@1 R@2 R@4 R@8 R@1 R@10 R@100

HTG (Soft.+Tri.)† ResNet18 v1∗ - 59.5 71.8 81.3 88.2 76.5 84.7 90.4 94 - - -

EE + Triplet‡

ResNet18 v1

0 58.6 70.7 80.6 88.1 83.5 90.3 94.6 97.1 74.7 88.5 95.2
2 59.3 70.7 80.8 88.1 84.5 90.8 94.5 97.0 76.9 89.4 95.3
4 59.6 70.0 79.8 87.4 84.5 90.8 94.7 97.1 76.8 89.2 95.2
8 60.2 71.9 81.5 88.4 85.4 91.4 94.9 97.2 76.1 88.8 94.9

ResNet34 v1

0 60.3 72.9 82.4 89.3 84.9 90.1 94.6 97.0 75.6 89.1 95.5
2 61.1 73.3 83.0 89.0 85.0 91.2 95.0 97.1 78.2 90.3 95.8
4 61.9 73.7 83.2 89.4 85.5 91.6 95.4 97.3 77.8 89.7 95.5
8 62.7 74.7 83.9 89.8 85.1 91.1 94.5 96.9 77.9 90.0 95.7

ResNet50 v1

0 63.0 73.9 83.1 89.4 87.3 93.0 96.1 98.0 81.2 92.0 96.6
2 63.5 74.9 84.3 89.7 88.2 93.2 96.2 97.9 82.5 92.7 96.9
4 63.7 75.0 83.5 89.8 88.4 93.6 96.3 98.1 82.3 92.4 96.8
8 64.6 75.4 83.9 90.9 88.3 93.3 96.1 98.0 82.0 92.4 96.8

Table B. Retrieval performance (%) of different network capacity, where n = 0 are baseline models. † denotes HTG method
with no-bias softmax loss and triplet loss, ‡ denotes the HPHN triplet, and ∗ is specifically modified ResNet18 v1.

References
[1] Alexander A Alemi, Ian Fischer, Joshua V Dillon, and Kevin

Murphy. Deep variational information bottleneck. arXiv
preprint arXiv:1612.00410, 2016. i

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. ii

[3] Alexander Hermans, Lucas Beyer, and Bastian Leibe. In de-
fense of the triplet loss for person re-identification. arXiv
preprint arXiv:1703.07737, 2017. ii

[4] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. arXiv preprint arXiv:1502.03167, 2015. i

[5] Laurens van der Maaten and Geoffrey Hinton. Visualiz-
ing data using t-sne. Journal of machine learning research,
9(Nov):2579–2605, 2008. ii

[6] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. Dropout: a simple way
to prevent neural networks from overfitting. The journal of
machine learning research, 15(1):1929–1958, 2014. i

[7] Yuji Tokozume, Yoshitaka Ushiku, and Tatsuya Harada.
Between-class learning for image classification. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 5486–5494, 2018. i

[8] Vikas Verma, Alex Lamb, Christopher Beckham, Amir Na-
jafi, Aaron Courville, Ioannis Mitliagkas, and Yoshua Ben-
gio. Manifold mixup: Learning better representations by in-
terpolating hidden states. 2018. i

[9] Hong Xuan, Abby Stylianou, and Robert Pless. Improved
embeddings with easy positive triplet mining. arXiv preprint
arXiv:1904.04370, 2019. ii

[10] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and
David Lopez-Paz. mixup: Beyond empirical risk minimiza-
tion. arXiv preprint arXiv:1710.09412, 2017. i

[11] Yiru Zhao, Zhongming Jin, Guo-jun Qi, Hongtao Lu, and
Xian-sheng Hua. An adversarial approach to hard triplet
generation. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 501–517, 2018. ii

iv


