
Supplementary Material:
MAST: A Memory-Augmented Self-supervised Tracker
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Figure 1: More qualitative results from our self-supervised dense tracking model on the YouTube-VOS dataset. The number on the top left refers to the
frame number in the video. Row 1: Tracking multiple similar objects with scale change. Row 2: Occlusions and out-of-scene objects (hand, bottle, and
cup). Row 3: Large camera shake. Row 4: Small object with fine details. Row 5: Inferring unseen pose of the deer; out-of-scene object (hand).

1. Network Architecture

In the same way as CorrFlow[2], we use a modified
ResNet-18[1] architecture. Details of the network are il-
lustrated in Table 1.

2. Accuracy Analysis from Attributes

We provide a more detailed accuracy list broken down
by video attributes provided by the DAVIS benchmark[3]
(listed in Table 2). The attributes illustrate the difficul-
ties associated with each video sequence. Figure 2 con-
tains the accuracies categorized by attribute. Several trends
emerge: first, MAST outperforms all other self-supervised
and unsupervised models by a large margin in all attributes.
This shows that our model is robust to various challenges
in dense tracking. Second, MAST obtains significant gains
on occlusion-related video sequences (e.g. OOC, OV), sug-

Stage Output Configuration
0 H ×W Input image

conv1 H/2×W/2 7×7, 64, stride 2

conv2 H/2×W/2

[
3× 3, 64

3× 3, 64

]
× 2

conv3 H/4×W/4

[
3× 3, 128

3× 3, 128

]
× 2

conv4 H/4×W/4

[
3× 3, 256

3× 3, 256

]
× 2

conv5 H/4×W/4

[
3× 3, 256

3× 3, 256

]
× 2

Table 1: Network architecture. Residual Blocks are shown in brackets (a
residually connected sequence of operations). See [1] for details.

gesting that memory-augmentation is a key enabler for
high-quality tracking: retrieving occluded objects from pre-
vious frames is very difficult without memory augmenta-
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Figure 2: Accuracy broken down by attribute: MAST outperforms previous self-supervised methods by a significant margin on all attributes, demonstrat-
ing the robustness of our model.

tion. Third, in videos involving background clutter, i.e.
background and foreground share similar colors, MAST ob-
tains a relatively small improvement over previous methods.
We conjecture this bottleneck could be caused by a shared
photometric loss; thus a different loss type (e.g. based on
texture consistency) could further improve the result.

ID Description ID Description

AC Appearance Change IO Interacting Objects
BC Background Clutter LR Low Resolution
CS Camera-Shake MB Motion Blur
DB Dynamic Background OCC Occlusion

DEF Deformation OV Out-of-view
EA Edge Ambiguity ROT Rotation
FM Fast-Motion SC Shape Complexity
HO Heterogeneus Object SV Scale-Variation

Table 2: List of video attributes provided in the DAVIS benchmark. We
break down the validation accuracy according to the attribute list.

3. Results on YouTube-VOS 2019 dataset

We also evaluate MAST and two other self-supervised
methods on YouTube-VOS 2019 validation dataset. The nu-
merical results are reported in Table 3. Augmenting on the
2018 version, the 2019 version contains more videos and
object instances. We observe similar trend as reported in
the main paper (i.e. significant improvement and lower gen-
eralization gap).

Method Sup. Overall ↑ Seen Unseen Gen. Gap ↓
J ↑ F ↑ J ↑ F ↑

Vid. Color.[4]† 7 39.0 43.3 38.2 36.6 37.5 3.7
CorrFlow[2] 7 47.0 51.2 46.6 44.5 45.9 3.7

SMAT (Ours) 7 64.9 64.3 65.3 61.5 68.4 0.15

Table 3: Video segmentation results on Youtube-VOS 2019 dataset. Higher
values are better. † indicates results based on our reimplementation.

4. More qualitative results
As shown in Figure 1, we provide more qualitative re-

sults exhibiting some of difficulties in the tracking task.
These difficulties include tracking multiple similar objects
(multi-instance tracking often fails by conflating similar ob-
jects), large camera shake (objects may have motion blur),
inferring unseen object pose of objects, and so on. As
shown in the figure, MAST handles these difficulties well.

5. Supplementary video
In order to better illustrate our results, we provide

a supplementary video in our project page (https://
github.com/zlai0/MAST). In the video, we give sim-
ple description of our method and also qualitative com-
parison with other self-supervised algorithms. We ob-
tain qualtitative results of Video Colorization[4] from our
reimplementation (our reimplemented achieves 34.1 in
J&F(Mean) while the original paper reports 34.0). The
qualitative results for CycleTime[5] and CorrFlow[2] comes
from their official codes.
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