Supplementary Material for
Block-wisely Supervised Neural Architecture Search with Knowledge Distillation

Changlin Li2,*, Jiefeng Peng1,*, Liuchun Yuan1,3, Guangrun Wang1,3†, Xiaodan Liang1,3, Liang Lin1,3, Xiaojun Chang2

1DarkMatter AI Research \hspace{1em} 2Monash University \hspace{1em} 3Sun Yat-sen University

{changlin.li,xiaojun.chang}@monash.edu, {jiefengpeng,ylc0003,xdliang328}@gmail.cn, wanggrun@mail2.sysu.edu.cn, linliang@ieee.org

A. Appendix

A.1. Model Architectures

Fig 1 shows the details of our searched architectures. ‘MB $x \times y$’ stands for an Inverted bottleneck convolution module with expand rate x and kernel size y. Blue blocks represent blocks with expand rate 6, whereas green ones represent blocks with expand rate 3. Orange blocks are fixed during architecture search.

Searched without constraint, DNA-d selects relatively expensive operations with large kernel size and high expansion rate. DNA-c, under the constraint of parameter number, tends to lower model size by reduce expansion rate and layer number at the tail end. Under the constraint of computational complexity, DNA-b and DNA-a tend to choose operations with fewer channels and lower expansion rate evenly in each block.

*Changlin Li and Jiefeng Peng contribute equally and share first-authorship. This work was done when Changlin Li worked as an intern at DarkMatter AI.

\†Corresponding Author is Guangrun Wang.
Figure 1. Architectures of DNA-a, b, c, d. 'MB $x \times y \times y$' stands for an Inverted bottleneck convolution module with expand rate x and kernel size y. Blue blocks represent blocks with expand rate 6, whereas green ones represent blocks with expand rate 3. Orange blocks are fixed during architecture search.