Residual Feature Aggregation Network for Image Super-Resolution
(Supplementary Material)

A. Study of the strided convolution in ESA block

As shown in Table 1, the strided convolution has a higher
PSNR than the palin convolution, which indicates that a
large receptive field is essential for image SR.

PSNR
strided conv | 32.65

plain conv 32.61
Table 1. Investigation of the effect of strided convolution in the
ESA block with scale factor of x4 on Set5.

B. Study of the window size for max-pooling in ESA
block

As shown in Table 2, we can achieve a higher PSNR by
using a pooling window size of 7 x 7, further proving the
critical importance of a large receptive field for image SR.

PSNR
7x 7T | 32.65
3x3 | 3259

Table 2. Investigation of the effects of different window sizes for
max-pooling in the ESA block with scale factor of x4 on Set5.

C. Running time comparison

In Table 3, we compare average forward time of our pro-
posed RFANet with RCAN [2] and SAN [!] on Urban100
with scale factor x4. The forward time of all the netowrks
is evaluated on the same machine with 4.3GHz Intel i7 CPU
(32G RAM) and an NVIDIA 1080Ti GPU using their offi-
cial codes. Our RFANet runs the fastest while achieving
the best PSNR which demonstrates the effectiveness of our
method.

Model Forward Time (s) | PSNR
RCAN [2] 0.3197 26.82
SAN [1] 2.5689 26.79

] RFANet (Ours) \ 0.2109 \ 26.92 \

Table 3. Average forward time comparison on Urban100 with scale
factor 4 on an NVIDIA 1080Ti GPU

D. More Qualitative Results

In Fig. 1 and Fig. 2, we provide more visual results of BI
and BD degradation models to prove the superiority of the
proposed RFANet.
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Figure 1. Visual comparisons for x4 SR with BI degradation model.
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Figure 2. Visual comparisons for x4 SR with BD degradation model.



