

Hierarchically Robust Representation Learning

Supplementary

Qi Qian¹ Juhua Hu² Hao Li¹

¹Alibaba Group

²School of Engineering and Technology
University of Washington, Tacoma, USA

{qi.qian, lihao.lh}@alibaba-inc.com juhuah@uw.edu

1. Proof of Theorem 1

Proof. Due to the smoothness, we have

$$\ell(\hat{\mathbf{x}}_i, y_i; \theta) \leq \ell(\mathbf{x}_i, y_i; \theta) + \langle \nabla_{\mathbf{x}_i} \ell, \hat{\mathbf{x}}_i - \mathbf{x}_i \rangle + \frac{L_{\mathbf{x}}}{2} \|\hat{\mathbf{x}}_i - \mathbf{x}_i\|_F^2$$

So

$$\begin{aligned} \ell(\hat{\mathbf{x}}_i, y_i; \theta) - \frac{\lambda_w}{2} \|\hat{\mathbf{x}}_i - \mathbf{x}_i\|_F^2 &\leq \ell(\mathbf{x}_i, y_i; \theta) + \langle \nabla_{\mathbf{x}_i} \ell, \hat{\mathbf{x}}_i - \mathbf{x}_i \rangle \\ &\quad - \frac{\lambda_w - L_{\mathbf{x}}}{2} \|\hat{\mathbf{x}}_i - \mathbf{x}_i\|_F^2 \end{aligned}$$

When λ_w is sufficiently large as $\lambda_w > L_{\mathbf{x}}$, R.H.S. is bounded and

$$\begin{aligned} \ell(\hat{\mathbf{x}}_i, y_i; \theta) - \frac{\lambda_w}{2} \|\hat{\mathbf{x}}_i - \mathbf{x}_i\|_F^2 \\ \leq \ell(\mathbf{x}_i, y_i; \theta) + \frac{1}{2(\lambda_w - L_{\mathbf{x}})} \|\nabla_{\mathbf{x}_i} \ell\|_F^2 \end{aligned}$$

Since $\nabla_{\mathbf{x}} \ell(\cdot)$ is L_{θ} -Lipschitz continuous, we have

$$\begin{aligned} \|\nabla_{\mathbf{x}} \ell(\mathbf{x}; \theta)\|_F^2 &\leq 2\|\nabla_{\mathbf{x}} \ell(\mathbf{x}; \theta) - \nabla_{\mathbf{x}} \ell(\mathbf{x}; \mathbf{0})\|_F^2 \\ &\quad + 2\|\nabla_{\mathbf{x}} \ell(\mathbf{x}; \mathbf{0})\|_F^2 \\ &\leq 2L_{\theta}^2 \|\theta\|_F^2 + 2\|\nabla_{\mathbf{x}} \ell(\mathbf{x}; \mathbf{0})\|_F^2 \end{aligned}$$

Note that $\|\nabla_{\mathbf{x}} \ell(\mathbf{x}; \mathbf{0})\|_F = 0$ in many convolutional neural networks. The bound can be improved and the original subproblem can be bounded as

$$\max_{\hat{\mathbf{x}}_i \in \mathbf{X}} \ell(\hat{\mathbf{x}}_i, y_i; \theta) - \frac{\lambda_w}{2} \|\hat{\mathbf{x}}_i - \mathbf{x}_i\|_F^2 \leq \ell(\mathbf{x}_i, y_i; \theta) + \frac{\gamma}{2} \|\theta\|_F^2$$

where $\gamma = \frac{L_{\theta}^2}{\lambda_w - L_{\mathbf{x}}}$. \square

2. Proof of Theorem 2

Proof. We consider the augmented examples as

$$\tilde{\mathbf{x}}_i = \mathbf{x}_i + \tau \mathbf{z}_i$$

According to the smoothness, we have

$$\begin{aligned} \ell(\hat{\mathbf{x}}_i, y_i; \theta) - \frac{\lambda_w}{2} \|\hat{\mathbf{x}}_i - \mathbf{x}_i\|_F^2 &\leq \ell(\tilde{\mathbf{x}}_i, y_i; \theta) + \langle \nabla_{\tilde{\mathbf{x}}_i} \ell, \hat{\mathbf{x}}_i - \tilde{\mathbf{x}}_i \rangle \\ &\quad + \frac{L_{\mathbf{x}}}{2} \|\hat{\mathbf{x}}_i - \tilde{\mathbf{x}}_i\|_F^2 - \frac{\lambda_w}{2} \|\hat{\mathbf{x}}_i - \mathbf{x}_i\|_F^2 \\ &= \ell(\tilde{\mathbf{x}}_i, y_i; \theta) + \langle \nabla_{\tilde{\mathbf{x}}_i} \ell - \tau L_{\mathbf{x}} \mathbf{z}_i, \hat{\mathbf{x}}_i - \mathbf{x}_i \rangle - \tau \langle \nabla_{\tilde{\mathbf{x}}_i} \ell, \mathbf{z}_i \rangle \\ &\quad + \frac{L_{\mathbf{x}} \tau^2}{2} \|\mathbf{z}_i\|_F^2 - \frac{\lambda_w - L_{\mathbf{x}}}{2} \|\hat{\mathbf{x}}_i - \mathbf{x}_i\|_F^2 \\ &\leq \ell(\tilde{\mathbf{x}}_i, y_i; \theta) + \frac{\|\nabla_{\tilde{\mathbf{x}}_i} \ell - \tau L_{\mathbf{x}} \mathbf{z}_i\|_F^2}{2(\lambda_w - L_{\mathbf{x}})} - \tau \langle \nabla_{\tilde{\mathbf{x}}_i} \ell, \mathbf{z}_i \rangle \\ &\quad + \frac{L_{\mathbf{x}} \tau^2}{2} \|\mathbf{z}_i\|_F^2 \\ &= \ell(\tilde{\mathbf{x}}_i, y_i; \theta) + \frac{\|\nabla_{\tilde{\mathbf{x}}_i} \ell\|_F^2}{2(\lambda_w - L_{\mathbf{x}})} \\ &\quad + \frac{\lambda_w}{\lambda_w - L_{\mathbf{x}}} \left(\frac{\tau^2 L_{\mathbf{x}} \|\mathbf{z}_i\|_F^2}{2} - \tau \langle \nabla_{\tilde{\mathbf{x}}_i} \ell, \mathbf{z}_i \rangle \right) \\ &\leq \ell(\tilde{\mathbf{x}}_i, y_i; \theta) + \frac{\gamma}{2} \|\theta\|_F^2 \\ &\quad + \frac{\lambda_w}{\lambda_w - L_{\mathbf{x}}} \left(\frac{\tau^2 L_{\mathbf{x}} \|\mathbf{z}_i\|_F^2}{2} - \tau \langle \nabla_{\tilde{\mathbf{x}}_i} \ell - \nabla_{\mathbf{x}_i} \ell, \mathbf{z}_i \rangle - \tau \langle \nabla_{\mathbf{x}_i} \ell, \mathbf{z}_i \rangle \right) \\ &\leq \ell(\tilde{\mathbf{x}}_i, y_i; \theta) + \frac{\gamma}{2} \|\theta\|_F^2 \\ &\quad + \frac{\lambda_w}{\lambda_w - L_{\mathbf{x}}} \left(\frac{\tau^2 L_{\mathbf{x}} \|\mathbf{z}_i\|_F^2}{2} + \tau \|\nabla_{\tilde{\mathbf{x}}_i} \ell - \nabla_{\mathbf{x}_i} \ell\|_F \|\mathbf{z}_i\|_F - \tau \langle \nabla_{\mathbf{x}_i} \ell, \mathbf{z}_i \rangle \right) \\ &\leq \ell(\tilde{\mathbf{x}}_i, y_i; \theta) + \frac{\gamma}{2} \|\theta\|_F^2 \\ &\quad + \frac{\lambda_w}{\lambda_w - L_{\mathbf{x}}} \left(\frac{3\tau^2 L_{\mathbf{x}} \|\mathbf{z}_i\|_F^2}{2} - \tau \langle \nabla_{\mathbf{x}_i} \ell, \mathbf{z}_i \rangle \right) \\ &= \ell(\tilde{\mathbf{x}}_i, y_i; \theta) + \frac{\gamma}{2} \|\theta\|_F^2 - \frac{\lambda_w}{\lambda_w - L_{\mathbf{x}}} \frac{\langle \nabla_{\mathbf{x}_i} \ell, \mathbf{z}_i \rangle^2}{6L_{\mathbf{x}} \|\mathbf{z}_i\|_F^2} \end{aligned}$$

The last equation is from setting τ to optimum as

$$\tau = \frac{\langle \nabla_{\mathbf{x}_i} \ell, \mathbf{z}_i \rangle}{3L_{\mathbf{x}} \|\mathbf{z}_i\|_F^2}$$

\square

3. Proof of Theorem 3

Proof. For an arbitrary distribution \mathbf{q} , we have

$$\begin{aligned} E[\|\mathbf{q}_{t+1} - \mathbf{q}\|_2^2] &= E[\|\mathcal{P}_\Delta(\mathbf{q}_t + \eta_t g_t) - \mathbf{q}\|_2^2] \\ &\leq E[\|\mathbf{q}_t + \eta_t g_t - \mathbf{q}\|_2^2] \\ &= E[\|\mathbf{q}_t - \mathbf{q}\|_2^2 + 2\eta_t(\mathbf{q}_t - \mathbf{q})^\top g_t + \eta_t^2 \|g_t\|_2^2] \\ &\leq E[\|\mathbf{q}_t - \mathbf{q}\|_2^2 + \eta_t^2 \mu^2 \\ &\quad + 2\eta_t(\mathcal{L}(\mathbf{q}_t, \theta_t) - \mathcal{L}(\mathbf{q}, \theta_t) - \frac{\lambda}{2} \|\mathbf{q}_t - \mathbf{q}\|_2^2)] \end{aligned}$$

By setting $c = \frac{\mu}{\lambda} \sqrt{\frac{\log(s)}{2s}}$ and \mathbf{q} to be optimum, we have

$$\begin{aligned} \max_{\mathbf{q}^* \in \Delta} \sum_t^T E[\mathcal{L}(\mathbf{q}^*, \theta_t) - \mathcal{L}(\mathbf{q}_t, \theta_t)] &\leq \mu \sqrt{2s \log(s)} - s\lambda \\ &\quad - \frac{\mu^2 \log(s)}{2\lambda} + \frac{\mu^2}{2\lambda} (\log(T) + 1) \\ &= \frac{\mu^2}{2\lambda} (\log(T) + 1) - (\mu \sqrt{\frac{\log(s)}{2\lambda}} - \sqrt{s\lambda})^2 \end{aligned}$$

□

The last inequality is from the fact that the objective is λ -strongly concave in \mathbf{q} and the observed gradient is unbiased. Therefore, we have

$$\begin{aligned} E[\mathcal{L}(\mathbf{q}, \theta_t) - \mathcal{L}(\mathbf{q}_t, \theta_t)] &\leq \frac{E[\|\mathbf{q}_t - \mathbf{q}\|_2^2] - E[\|\mathbf{q}_{t+1} - \mathbf{q}\|_2^2]}{2\eta_t} \\ &\quad - \frac{\lambda}{2} \|\mathbf{q}_t - \mathbf{q}\|_2^2 + \frac{\eta_t}{2} \mu^2 \end{aligned}$$

When $\eta_t = \frac{1}{\lambda t}$, we have

$$\begin{aligned} E[\mathcal{L}(\mathbf{q}, \theta_t) - \mathcal{L}(\mathbf{q}_t, \theta_t)] &\leq \frac{\lambda t}{2} (E[\|\mathbf{q}_t - \mathbf{q}\|_2^2] - E[\|\mathbf{q}_{t+1} - \mathbf{q}\|_2^2]) \\ &\quad - \frac{\lambda}{2} \|\mathbf{q}_t - \mathbf{q}\|_2^2 + \frac{1}{2\lambda t} \mu^2 \end{aligned}$$

When $\eta_t = \frac{1}{\lambda t c}$, we have

$$\begin{aligned} E[\mathcal{L}(\mathbf{q}, \theta_t) - \mathcal{L}(\mathbf{q}_t, \theta_t)] &\leq \frac{\lambda t c}{2} (E[\|\mathbf{q}_t - \mathbf{q}\|_2^2] - E[\|\mathbf{q}_{t+1} - \mathbf{q}\|_2^2]) \\ &\quad - \frac{\lambda}{2} \|\mathbf{q}_t - \mathbf{q}\|_2^2 + \frac{1}{2\lambda t c} \mu^2 \end{aligned}$$

We assume that $\eta_t = \frac{1}{c\lambda t}$ and $c > 1$ for the first s iterations and then $\eta_t = \frac{1}{\lambda t}$. So we have

$$\begin{aligned} \sum_t^T E[\mathcal{L}(\mathbf{q}, \theta_t) - \mathcal{L}(\mathbf{q}_t, \theta_t)] &= \sum_{t=1}^s E[\mathcal{L}(\mathbf{q}, \theta_t) - \mathcal{L}(\mathbf{q}_t, \theta_t)] \\ &\quad + \sum_{t=s+1}^T E[\mathcal{L}(\mathbf{q}, \theta_t) - \mathcal{L}(\mathbf{q}_t, \theta_t)] \\ &\leq \sum_{t=1}^s \left(\left(\frac{c\lambda}{2} - \frac{\lambda}{2} \right) E[\|\mathbf{q}_t - \mathbf{q}\|_2^2] + \frac{1}{2\lambda t c} \mu^2 \right) + \sum_{t=s+1}^T \frac{1}{2\lambda t} \mu^2 \\ &\leq s\lambda(c-1) + \frac{\mu^2}{2\lambda} \log(s) \left(\frac{1}{c} - 1 \right) + \frac{\mu^2}{2\lambda} (\log(T) + 1) \end{aligned}$$