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1. Proof of Theorem 1

Proof. Due to the smoothness, we have
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When )\, is sufficiently large as \,, > Ly, RH.S. is
bounded and
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Since V{(-) is Lg-Lipschitz continuous, we have
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Note that [|[Vxf(x;0)||r = 0 in many convolutional neu-

ral networks. The bound can be improved and the original
subproblem can be bounded as
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2. Proof of Theorem 2

Proof. We consider the augmented examples as
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According to the smoothness, we have
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The last equation is from setting 7 to optimum as
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3. Proof of Theorem 3 By setting c = £/ =5 bg( ) and q to be optimum, we have

Proof. For an arbitrary distribution q, we have
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The last inequality is from the fact that the objective is A-
strongly concave in q and the observed gradient is unbiased.
Therefore, we have
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When 7, = )\t, we have
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We assume that 77t = M - and ¢ > 1 for the first s itera-
tions and then 7, = . So we have
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