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1. Proof of Theorem 1
Proof. Due to the smoothness, we have

`(x̂i, yi; θ) ≤ `(xi, yi; θ)+〈∇xi`, x̂i−xi〉+
Lx

2
‖x̂i−xi‖2F

So

`(x̂i, yi; θ)−
λw
2
‖x̂i − xi‖2F ≤ `(xi, yi; θ) + 〈∇xi`, x̂i − xi〉

− λw − Lx

2
‖x̂i − xi‖2F

When λw is sufficiently large as λw > Lx, R.H.S. is
bounded and

`(x̂i, yi; θ)−
λw
2
‖x̂i − xi‖2F

≤ `(xi, yi; θ) +
1

2(λw − Lx)
‖∇xi`‖2F

Since∇x`(·) is Lθ-Lipschitz continuous, we have

‖∇x`(x; θ)‖2F ≤ 2‖∇x`(x; θ)−∇x`(x;0)‖2F
+2‖∇x`(x;0)‖2F

≤ 2L2
θ‖θ‖2F + 2‖∇x`(x;0)‖2F

Note that ‖∇x`(x;0)‖F = 0 in many convolutional neu-
ral networks. The bound can be improved and the original
subproblem can be bounded as

max
x̂i∈X

`(x̂i, yi; θ)−
λw
2
‖x̂i − xi‖2F ≤ `(xi, yi; θ) +

γ

2
‖θ‖2F

where γ =
L2
θ

λw−Lx
.

2. Proof of Theorem 2
Proof. We consider the augmented examples as

x̃i = xi + τzi

According to the smoothness, we have

`(x̂i, yi; θ)−
λw
2
‖x̂i − xi‖2 ≤ `(x̃i, yi; θ) + 〈∇x̃i`, x̂i − x̃i〉

+
Lx

2
‖x̂i − x̃i‖ −

λw
2
‖x̂i − xi‖2

= `(x̃i, yi; θ) + 〈∇x̃i`− τLxzi, x̂i − xi〉 − τ〈∇x̃i`, zi〉

+
Lxτ

2

2
‖zi‖2 −

λw − Lx

2
‖x̂i − xi‖2

≤ `(x̃i, yi; θ) +
‖∇x̃i`− τLxzi‖2F

2(λw − Lx)
− τ〈∇x̃i`, zi〉

+
Lxτ

2

2
‖zi‖2F

= `(x̃i, yi; θ) +
‖∇x̃i`‖2F

2(λw − Lx)

+
λw

λw − Lx
(
τ2Lx‖zi‖2F

2
− τ〈∇x̃i`, zi〉)

≤ `(x̃i, yi; θ) +
γ

2
‖θ‖2F

+
λw

λw − Lx
(
τ2Lx‖zi‖2F

2
− τ〈∇x̃i`−∇xi`, zi〉 − τ〈∇xi`, zi〉)

≤ `(x̃i, yi; θ) +
γ

2
‖θ‖2F

+
λw

λw − Lx
(
τ2Lx‖zi‖2F

2
+ τ‖∇x̃i`−∇xi`‖‖zi‖ − τ〈∇xi`, zi〉)

≤ `(x̃i, yi; θ) +
γ

2
‖θ‖2F

+
λw

λw − Lx
(
3τ2Lx‖zi‖2F

2
− τ〈∇xi`, zi〉)

= `(x̃i, yi; θ) +
γ

2
‖θ‖2F −

λw
λw − Lx

〈∇xi`, zi〉2

6Lx‖zi‖2F
The last equation is from setting τ to optimum as

τ =
〈∇xi`, zi〉
3Lx‖zi‖2F



3. Proof of Theorem 3

Proof. For an arbitrary distribution q, we have

E[‖qt+1 − q‖22] = E[‖P∆(qt + ηtgt)− q‖22]
≤ E[‖qt + ηtgt − q‖22]
= E[‖qt − q‖22 + 2ηt(qt − q)>gt + η2

t ‖gt‖22]
≤ E[‖qt − q‖22 + η2

t µ
2

+ 2ηt(L(qt, θt)− L(q, θt)−
λ

2
‖qt − q‖22)]

The last inequality is from the fact that the objective is λ-
strongly concave in q and the observed gradient is unbiased.
Therefore, we have

E[L(q, θt)− L(qt, θt)] ≤
E[‖qt − q‖22]− E[‖qt+1 − q‖22]

2ηt

− λ

2
‖qt − q‖22 +

ηt
2
µ2

When ηt = 1
λt , we have

E[L(q, θt)− L(qt, θt)] ≤
λt

2
(E[‖qt − q‖22]− E[‖qt+1 − q‖22])

− λ

2
‖qt − q‖22 +

1

2λt
µ2

When ηt = 1
λtc , we have

E[L(q, θt)− L(qt, θt)] ≤
λtc

2
(E[‖qt − q‖22]− E[‖qt+1 − q‖22])

− λ

2
‖qt − q‖22 +

1

2λtc
µ2

We assume that ηt = 1
cλt and c > 1 for the first s itera-

tions and then ηt = 1
λt . So we have

T∑
t

E[L(q, θt)− L(qt, θt)] =
s∑
t=1

E[L(q, θt)− L(qt, θt)]

+

T∑
t=s+1

E[L(q, θt)− L(qt, θt)]

≤
s∑
t=1

(
(
cλ

2
− λ

2
)E[‖qt − q‖22] +

1

2λtc
µ2
)
+

T∑
t=s+1

1

2λt
µ2

≤ sλ(c− 1) +
µ2

2λ
log(s)(

1

c
− 1) +

µ2

2λ
(log(T ) + 1)

By setting c = µ
λ

√
log(s)

2s and q to be optimum, we have

max
q∗∈∆

T∑
t

E[L(q∗, θt)− L(qt, θt)] ≤ µ
√
2s log(s)− sλ

− µ2 log(s)

2λ
+
µ2

2λ
(log(T ) + 1)

=
µ2

2λ
(log(T ) + 1)− (µ

√
log(s)

2λ
−
√
sλ)2


