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1. Experimental Details

Task models: We design specific task models and em-
ploy different training strategies for the three datasets ac-
cording to their characteristics.

In Digits dataset, the model architecture is conv-pool-
conv-pool-fc-fc-softmax. There are two 5× 5 convolutional
layers with 64 and 128 channels respectively. Each convo-
lutional layer is followed by a max pooling layer with the
size of 2 × 2. The size of the two Fully-Connected (FC)
layers is 1024 and the size of the softmax layer is 10.

In CIFAR-10-C [2], we use Wide Residual Network
(WRN) [11] with 16 layers and the width is 4. The first
layer is a 3×3 convolutional layer. It converts the original
image with 3 channels to feature maps of 16 channels. Then
the features go through three groups of 3×3 convolutional
layers. Each group consists of two blocks and each block is
composed of two convolutional layers with the same num-
ber of channels. And their channels are {64, 128, 256} re-
spectively. Each convolutional layer is followed by batch
normalization (BN) [3]. An average pooling layer with the
size of 8 × 8 is appended to the output of the third group.
Finally, a softmax layer with the size of 10 predicts the dis-
tribution over classes.

In SYTHIA [7], we use FCN-32s [5] with the backbone
of ResNet-50 [1]. The model begins with ResNet-50. 1×1
convolutional layer with 14 channels is appended to predict
scores for each class at each of the coarse output locations.
A deconvolution layer is followed to up-sample the coarse
outputs to the original size through bilinear interpolation.

Wasserstein Auto-Encodes: We follow [8] to imple-
ment WAEs but slightly modifying architectures for the
three datasets according to their characteristics.

In Digits dataset, the encoder and decoder are built with
FC layers. The encoder consists of two FC layers with the
size of 400 and 20 respectively. Accordingly, the decoder
consists of two FC layers with the size of 400 and 3072
respectively. The discriminator consists of two FC layers
with the size of 128 and 1 respectively. The architecture of
is shown in Fig. 1 (a).

In CIFAR-10-C [2], the encoder begins with four convo-
lutional layers with the channels of {16, 32, 32, 32}. And
two FC layers with the size of 1024 and 512 are followed.
Accordingly, the decoder begins with two FC layers with
the size of 512 and 1024 respectively. And four deconvolu-
tion layers with the channels of {32, 32, 16, 3} are followed.
Each layer is followed by BN [3] except for the final layer
of the decoder. The discriminator consists of two FC layers
with the size of 128 and 1 respectively. The architecture is
shown in Fig. 1 (b).

In SYTHIA [7], the encoder begins with three convolu-
tional layers with the channels of {32, 64, 128}. And two
FC layers with the size of {3840, 512} are followed. Ac-
cordingly, the decoder begins with two FC layers with the
size of {512, 3840}. And three deconvolution layers with
the channels of {64, 32, 3} are followed. Each layer is fol-
lowed by BN [3] except for the final layer of the decoder.
The discriminator consists of three FC layers with the size
of {512, 512, 1}. The architecture is shown in Fig. 1 (c).

We apply the Adam optimizer in training WAEs. The
learning rate is 0.001 for Digits and 0.0001 for both CIFAR-
10-C and SYTHIA. The training epoches is 20 for Digits,
100 for CIFAR-10-C [2], and 200 for SYTHIA [7].

2. Additional Experimental Results
2.1. Ablation Study

Validation of meta-learning scheme: The results of
four kinds of unseen corruptions are shown in Fig. 2. As
seen, M-ADA can significantly reduce variance and yield
better performance across all levels of severity. The exper-
imental results prove that the meta-learning scheme plays a
key role to improve the training stability and classification
accuracy. This is extremely important when performing ad-
versarial domain augmentation in challenging conditions.

Hyper-parameter tuning ofK, α, and β: We study the
effect of three important hyper-parameters of M-ADA: the
number of augmented domains (K), the distance between
the source and augmented domain in the embedding space
(α), and the deviation between the source and augmented
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Figure 1. Architectures of WAEs. From left to right: (a) WAE for Digits ; (b) WAE for CIFAR-10-C [2]; and (c) WAE for SYTHIA [7].
Note that “+”: positive samples for discriminator; “-”: negative samples for discriminator.
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Figure 2. Validation of meta-learning scheme. Five levels of severity are evaluated on each unseen corruption. From left to right: (a)
Gaussian Noise; (b) Speckle Noise ; (c) Impulse Noise; and (d) Shot Noise.

domain (β). We plot the accuracy curve under different K,
α, and β in Fig. 3. In Fig. 3 (left), we find that the accuracy
reaches the summit when K = 3 and keeps falling with K
increasing. This is due to the fact that excessive adversarial
samples above a certain threshold will increase the instabil-
ity and degrade the robustness of the model. Since the dis-
tance between the augmented and source domain increases
as K increases, a large K may break down the constraint
of semantic consistency yielding inferior model training. In
Fig. 3 (middle), we find that the accuracy reaches the sum-
mit when α = 1.0 and keeps falling with α increasing. This
is because large α will make the source and augmented do-
main too close in the embedding space, yielding limited do-
main transportation. In Fig. 3 (right), we observe that the
accuracy reaches the summit when β = 2.0×103 and drops
slightly when β increases. This is because large β will pro-
duce domains too far way from the source S and even reach
out of the manifold in embedding space.

2.2. Comparison on CIFAR-10-C

We train all models on clean data, i.e., CIFAR-10, and
test them on corruption data, i.e., CIFAR-10-C. In this case,
there are totally 19 unseen testing domains. We present the
result of each corruption with the highest severity in Tab. 1.
We observe that M-ADA substantially outperforms other
methods on most corruptions. Specially, in several corrup-
tions such as Frost, Glass blur, Gaussian blur, Pixelate, and
corruptions related with Noise, M-ADA outperforms ERM
[4] with more than 10%. More importantly, M-ADA has

the lowest values on mCE and relative mCE, indicating its
strong robustness against image corruptions.

2.3. Comparison of Different Lrelax

WAEs employ Wasserstein metric to measure the distri-
bution distance between the input and reconstruction, which
is desirable for domain augmentation. So the reconstruction
error Lrelax = ‖x+ − V (x+)‖2 indicates if x+ lie in the
same distribution as x. Using WAE instead of vanilla AE is
the key design to achieve this goal (Table 2). Additionally,
our experiments indicate that ‖V (x)− V (x+)‖2 has better
relaxation effect and yields improved accuracy. The distri-
bution distance is more reliable in the reconstruction space
where Wasserstein prior has been applied.
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Weather Blur Noise

Fog Snow Frost Zoom Defocus Glass Gaussian Motion Speckle Shot Impulse Gaussian
ERM [4] 65.92 74.36 61.57 59.97 53.71 49.44 30.74 63.81 41.31 35.41 25.65 29.01
CCSA [6] 66.94 74.55 61.49 61.96 56.11 48.46 32.22 64.73 40.12 33.79 24.56 27.85
d-SNE [10] 65.99 75.46 62.25 58.47 53.71 50.48 33.06 63.70 45.30 39.93 27.95 34.02
GUD [9] 68.29 76.75 69.94 62.95 56.41 53.45 38.33 63.93 38.45 36.87 22.26 32.43
M-ADA w/o Lrelax 66.99 80.09 74.93 54.15 44.67 60.57 30.53 57.06 59.88 59.18 43.46 55.07
M-ADA w/o ML 67.68 80.91 76.20 65.70 56.87 62.14 41.20 63.86 60.01 59.63 40.04 55.70
M-ADA (full) 69.36 80.59 76.66 68.04 61.18 61.59 47.34 64.23 60.88 60.58 45.18 56.88

Digital

Jpeg Pixelate Spatter Elastic Brightness Saturate Contrast Avg. mCE RmCE
ERM [4] 69.90 41.07 75.36 72.40 91.25 89.09 36.87 56.15 1.00 1.00
CCSA [6] 69.68 40.94 77.91 72.36 91.00 89.42 35.83 56.31 0.99 0.99
d-SNE [10] 70.20 38.46 73.40 73.33 90.90 89.27 36.28 56.96 0.99 1.00
GUD [9] 74.22 53.34 80.27 74.64 89.91 82.91 31.55 58.26 0.97 0.95
M-ADA w/o Lrelax 76.45 53.13 80.75 73.85 90.86 87.01 27.83 61.92 0.90 0.86
M-ADA w/o ML 77.62 52.49 81.02 75.54 90.69 86.58 26.30 64.22 0.85 0.80
M-ADA (full) 77.14 52.25 80.62 75.61 90.78 87.62 29.71 65.59 0.82 0.77

Table 1. Full version of Tab. 4 in main paper. The models are generalized from clean data to different corruptions. We report the classifi-
cation accuracy (%) of 19 corruptions under the corruption level of “5” (severest). We also report the mean Corruption Error (mCE) and
relative mCE (RmCE) in the last two columns. The lower the better for mCE and RmCE.

1 2 3 4 5 6 7 8 9 10
Number of Augmented Domains K

53

54

55

56

57

58

59

60

61

A
cc

ur
ac

y 
(%

)

1 10 102 103 104 105 106 107 108 109

Coefficient of Constraint α (×10−6)

50

52

54

56

58

60

A
cc

ur
ac

y 
(%

)

5 10 15 20 25 30 35 40 45 50
Coefficient of Relaxation β (×102)

55

56

57

58

59

60

A
cc

ur
ac

y 
(%

)

Figure 3. Hyper-parameter tuning of K, α, and β. We set K = 3, α = 1.0, and β = 2.0× 103 according to the best accuracy.

‖x− x+‖2 Vanilla AE WAE
Digits 55.71% 58.67% 59.49%
CIFAR-10-C 62.03% 63.34% 65.59%

Table 2. Accuracy comparison using different relaxation terms.
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