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This is the supplemental material to “HybridPose: 6D
Object Pose Estimation under Hybrid Representations”. We
provide detailed explanations to our the algorithm used in
the initialization sub-module. We also conduct a stabil-
ity analysis of the refinement sub-module, and show how
the optimal solution to the the objective function changes
with respect to noise in predicted representations. In addi-
tion, we present an ablation study on Linemod [ 1] dataset.
While keypoints alone already achieve reasonable pose es-
timation performance on Linemod, utilizing symmetry cor-
respondences and edge vectors lead to slight improvements.

1. Initial Solution for Pose Regression

Recall that we denote 3D keypoint coordinates in the
canonical coordinate system as p;,, 1 < k < |K|. To make
notations uncluttered, we denote output of the first module,
i.e., predicted keypoints, edge vectors, and symmetry cor-
respondences as p, € R?*,1 < k < |K|, v, € R?,1 <
e <|€],and (q,, € R? q,, € R?),1 < s < [S], respec-
tively. Our formulation also uses the homogeneous coordi-
nates p;, € R?, v, € R%,q,, € R*and q,, € R? of p,,
Ve, g, and g, o respectively. The homogeneous coordi-
nates are normalized by camera intrinsic matrix.

1.1. Three constraints for object pose.

We seek to generalize the EPnP algorithm which only ex-
ploits keypoint 2D-3D correspondences for pose estimation
by leveraging hybrid representations, keypoint, edge vector
and symmetry correspondence. To this end, we introduce
the following difference vectors for each type of predicted
elements:

Fllg,t(pk) = Py, X (Rpy, +1), (D
Tht(ve,p,,) i= be X (RP,, + 1) + b, x (Rv.), (2)
Tg,t(qs,lﬂqsl) = (qs,l 2 qs,z)TRﬁr- (3

where e, and e, are end vertices of edge e, v, = P, —D,, €
R3, and 1, € R? is the normal of the reflection symmetry
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plane in the canonical system.

Proposition 1 If there is a perfect alignment between the
predicted elements and the corresponding 3D keypoint tem-
plate with respect to the ground-truth pose R*,t*. Then

_IKC —& S
Trs g+ (Pr) = 0,7 Rs 4+ (VeDe, ) = 0,75 4(q51,952) =0
Proof:

1. The proof of the first equality is straight-forward as
there exists a “depth” A, > 0 so that

Akpy = R'pj, +t*
It follows that
0 = \Dy X Py, = Py, X (R*py, +t7)

2. The proof of the second equality follows the first
equality. So we have

pe, x (R'P,, +t) =0 p,, x (R'p,, +17) =0
Replacing p,, by v, + p,_, we have

Ve X (R*P,, +t*) + P, X (R'P., +17) =0
Replacing the second p,, by U + P, in the above
equation, we have

Ve X (R*p,, +t*) +p., x R0, =0

3. To prove the third equality, define the depths of g, ;
and g, 5 as As1 and Ay 2 and the corresponding 3D
model points in the canonical system as g, ; and g 5.
P, 1s a point on the reflectional symmetry plane, whose
normal is 7,.. Given a symmetry correspondence pair
(g5,1,95,2), we have

68,2 = (13 - 2ﬁrﬁg‘)as,l + 2ﬁ7’ﬁg‘ﬁs (4)



Let Ry, =I5 — 2ﬁrﬁf, t, = 2ﬁrﬁTTﬁS. Following the
camera perspective model, we have

A571qs,1 == R*q&l + t*
As 28,0 = R*R,q,, + Rt +t*

Subtracting these two equations, we have

As2ds2 — X514 = RY(RsGgq +ts — Q1)

Left multiply both sides of the equation by g, 5X
yields

— X515 X Qg1 = Qg0 X [R*(RsGs 1 +ts —Gs1)]

®)
Geometrically, (5) reveals that g, 5 x g, is perpen-
dicular to the plane with span of {q, 5, R*(Rsq,, +
t; —q,)}, thus we have

((AIS,Q X QS,I)TR*(RSQS,I + tS _as,l) =
2(ﬁg‘(f)s - 65,1))({]5,2 X (A]s,l)TR*ﬁT =0

Since 2(m2, (P, — @,1)) is a non-zero scalar, we can
delete this term and finally get

(QS,Q X QS,I)TR*ﬁT =0
1.2. Pose solution in eigenvector space.

A nice feature shared by (1), (2) and (3) is that all con-
straints are linear in the elements of R and ¢. This al-
lows us to derive a closed-form solution of R and ¢ in
the affine transformation space. Specifically, we can define
x = (rT, T T tT)T, . as a vector that contains rotation
and translation parameters in affine space. Expanding con-
straint (1) and constraint (2) yields three linear equations for
each predicted element respectively for «, and expanding
constraint (3) yields one linear equation. By concatenating
all linear equations of predicted elements together, we can
generate a linear system of the form Ax = 0, where A is
matrix and its dimension is (3|KC| + 3|€] + |S]) x 12.

To model the relative importance among keypoints, edge
vectors, and symmetry correspondences, we rescale (2) and
(3) by hyper-parameters ag and ag, respectively, to gener-
ate A. As discussed in the body of this paper, we calculate
ap and ag by solving an optimization problem using finite-
difference and back-track line search.

Then following EPnP [2], we compute x as

N
T=> v (6)
=1

where v; is the 7' smallest right singular vector of A. Ide-
ally, when predicted elements are noise-free, N = 1 with
x = v; is an optimal solution. However, this strategy per-
forms poorly given noisy predictions. Same as EPnP [2],
we choose N = 4.

1.3. Optimize a good linear combination.

To compute the optimal x, we optimize latent variables
v; and the rotation matrix R with following objective func-
tion:
4
1 . R— 2
rein | Z YiRi = R[> ™)
where R; € R3*3 is reshaped from the first 9 elements of

v;. We solve this optimization problem with the following
alternating procedure:

1. Fix 7; and solve for R by SVD. ie. R =
Udiag(1,1,1)V7T given S5, yiR; = USVT!,

2. Fix R and solve for ~;’s by optimizing a linear system
Zle v:;R; = R in an element-wise manner.

To initialize ~;’s for the above optimization problem, we
calculate ~; with ¢ = 1...3 by enforcing that Zle v R; is
an orthogonal matrix’:

3 3
O RN iR =13 ®
=1 =1

Since I3 is a symmetric matrix, expanding (8) yields 6
nonlinear constraints for v = (1, 72,v3) T, which is how-
ever uneasy to solve. We then define a new vector y =

(Y192, Y3, Y4, Y5, Y6) T = (VFM72, 7173 73,7273 73) *

and form a linear system C'y = z which has the unique
solution with z generated from I5. Afterwards, it is easy
to recover y; from y and optimize from initialized ; alone
with v4 = 0.

After optimization, we again apply SVD to project
Z?Zl ~iR; onto the space of SO(Q3), ie., R™!' =
Udiag(1,1,1)VT and enforce det(R™™*) > 0 where
Rt = UXVT. Leveraging Az = 0 defined in section
(1.2), the corresponding translation £ is

tinit _ _(Ag‘Az)—lAgAlrinit (9)

where Ay = A, 1.0, A2 = A}, 10.12), 762 is reshaped from
Rin?ﬂt.

2. Ablation Study on Linemod Dataset

Table 1 summarizes the performance of HybridPose
using different predicted intermediate representations on
Linemod dataset. The overall relative performance is simi-
lar to that on Occlusion-Linemod. Specifically, adding sym-
metry correspondences can boost the performance of rota-
tions. Adding edge vectors can significantly boost the per-
formance of both rotations and translations. Moreover, such

'If det(R) < 0 we enforce det(R) > 0 by defining R =
Udiag(1,1,-1)VT,

2The reason of initializing 3 y;’s is that (8) is unable to provide enough
linear constraints for 4 -;’s and this initialization ensures the convergence
of optimization.



keypoints keypoints + symmetries full model

Rotation Translation | Rotation  Translation | Rotation Translation
ape 1.122° 0.085 1.064° 0.090 0.808° 0.055
benchvise 1.319° 0.039 1.194° 0.037 0.657° 0.015
cam 1.310° 0.058 1.203° 0.058 0.716° 0.025
can 1.323° 0.053 1.210° 0.053 0.696° 0.024
cat 1.127° 0.062 1.031° 0.062 0.696° 0.029
driller 1.387° 0.037 1.294° 0.034 0.792° 0.019
duck 1.052° 0.080 1.038° 0.080 0.710° 0.044
eggbox 1.599° 0.072 1.317° 0.056 0.740° 0.029
glue 1.064° 0.053 1.063° 0.053 0.759° 0.026
holepuncher | 1.351° 0.076 1.188° 0.073 0.709° 0.034
iron 1.629° 0.038 1.456° 0.039 0.769° 0.016
lamp 1.606° 0.036 1.321° 0.036 0.740° 0.020
phone 1.093° 0.038 1.093° 0.038 0.695° 0.021
mean 1.306° 0.056 1.190° 0.055 0.730° 0.028

Table 1. Qualitative evaluation with different intermediate representations (Linemod). We report errors using two metrics: the median
of absolute angular error in rotation, and the median of relative error in translation with respect to object diameter.

improvements are consistent when starting from only using
keypoints and when starting from combing keypoints and
edge vectors.

3. Stability Analysis for Pose Refinement

In this section, we provide a local stability analysis of
the pose regression procedure, which amounts to solving
the following optimization problem:

1K

min Zp 7% e (i) I, B 175 (P13,

MRS

+ g 2o Arhewol Be)lrueva) i,
L :

|5| ZP (r7,t(ds,1,45,2), Bs) (10)

When predictions are accurate, then the optimal solution
of the objective function described above should recover
the underlying ground-truth. However, when the predic-
tions possess noise, then the optimal object pose can drift
from the underlying ground-truth. Our focus is local anal-
ysis, which seeks to understand the interplay between dif-
ferent objective terms defined by keypoints, edge vectors,
and symmetry correspondences. Therefore, we assume the
noise level of the input is small, and the perturbation of the
output is well captured by low-order Taylor expansion of
the output.

Our goal is to characterize the relation between the vari-
ance of the input noise and the variance of the output pose.
We show that incorporating edge vectors and symmetry cor-
respondences generally help to reduce the variance of the
output.

The remainder of this section is organized as follows.
In Section 3.1, we provide a local stability analysis frame-
work for regression problems. In Section 3.2, we describe
the structure of the pose regression and apply this frame-
work to provide a preliminary analysis of the stability of
pose regression. In Section 3.3, we provide further analy-
sis on a specific example, which indicates the interactions
among keypoints, edge vectors, and symmetry correspon-
dences. Finally, Section 3.4 provide proofs of the proposi-
tions in this analysis.

3.1. Local Stability Analysis Framework

We begin with a general result regarding an optimization
problem of the following form

z*(y) := argmin f(x,y). (11)
y

In the context of this paper, y encodes the noise associated
with the predictions, i.e., keypoints, edge vectors, and sym-
metry correspondences. & € RS provides a local parame-
terization of the output, i.e., the object pose. The specific
expressions of y and x will be described in Section 3.2.

Without losing generality, we further assume that f sat-
isfies the following assumptions (which are valid in the con-
text of this paper):

e f(x,y) > 0. Moreover, f(x,y) = 0 if and only if
x = 0 and y = 0. This means *(0) = 0, and (0, 0)
is the strict global optimal solution.

* f is smooth and at least C*® continuous.

* The following Hessian matrix is positive definite in
some local neighborhood of (0, 0):

o%f  9°f
02z Oxdy

9% f 9%f :
Oxdy 02y




Our analysis will utilize the following partial derivative
of * with respect to y.

Proposition 2 Under the assumptions described above,
x*(y) is unique in the local neighborhood of 0, and

ox* 0? -1 0?
W)=~ (G @ )

(y),v).
(12)

Proof. See Section 3.4.2. J
Since we are interested in local stability analysis, we as-
sume the magnitude of y is small. Thus,

ox*

w(y) ~ 5

(0) - y. 13)

If we further assume y follows some random distribution
whose variance matrix if Var(y). Then the variance of the
output * is given by

Var(z*(y))
L Pf1 9*f 0% f 0%f -1
N((“)?:c) " 0xdy .Var(y)(amay)T((??:c) - 14

Note that in our problem, f consists of non-linear least

squares, i.e.,
[=
X 7,

The following proposition characterizes how to compute

o2 f
and amay

a2 (1)

Pr0p0s1t10n 3 Under the expression described in (15), the
2 2

second-order derivatives g2£ and aamaf at (0, 0) are given

Y

by
f z 1 87'2 iT
Z ﬁQQ o Z- (16)
z 1 arl 8T2
8$8y Z a7

Proof. See Section 3.4.3. [
3.2. Structure of Pose Stability

We begin by rephrasing the pose-regression problem de-
scribed in the main paper.
Ground-truth setup. We use the same definition of vari-
ables as that in full paper. Recall that P, is coordinates
of keypoint in canonical system. Let R9' and t9 be the
ground-truth pose. Then the ground-truth 3D location of p,,
in the camera coordinate system is

9t — RI'p, +t9, 1<k <I|K|

Letp] = (PztngvpztyBD,pthD) Then the ground-truth

image coordinates of the projected keypoint pzt € R?is
given by
gt,3D gt,3D

Dg k

gt _ VL Y T _ (9t gt \T

pk _( gt,3D gtygp) _(pk@vphy) .
k,z k,z

Likewise, recall (q,;, q,,) are symmetry correspondence in
the world coordinate system, and let

ql = ROy, +t
@l = RI'qy +t

denote the transformed points in the camera coordinate sys-

—gt __ gt, 3D _gt,3D _gt,3D\T :
tem, where q; = (q¢;%. "+ 45, 9> )" - So the image

coordinates of each symmetry correspondence are given by

gt,3D gt,3D gt,3D gt,3D
gt __ (qsl , T sl,y )T gt __ (qSQw s2,y )T
91 =\"313D) “gt3D/ > 92 = \"5 3D 44,3D
sl,z sl,z s2,z s2,z

Noise model. we proceed to describe the noise model used
in the stability analysis. In this analysis, we assume each
input keypoint is perturbed from the ground-truth location

by Y = (yk:,$7 yk,y>T» i~e':

Pr =P + Y-
Likewise, we assume each input edge vector is perturbed
from the ground-truth edge vector by ¥y, = (Ye,z: Yey)” s
ie.,

=pL — Pl + Y.
Finally, for symmetry correspondences, we assume that
g, is not perturbed), and g, is perturbed by y, =

(ys,m, ys,y)T, i.e.,

t
ds1 = qu’ ds2 = qs2 + Ys-

Local parameterization. We parameterize the 6D object
pose locally using exponential map with coefficients (¢ €
R3, €€ R?),ie

R =exp(ex)- R, t=t%+¢e.

Note this parameterization is quite standard for rigid trans-
formations.
Now consider the three terms used in pose regression”:

T = p), — Pri(Py),

ré = v, — (Prt(P..) — Prt(Pe,)):

e
Tf = ((}3,1 X QS,Q)TRH”"

The following proposition characterizes the derivatives
between each term and the parameters of the noise model
and the parameters of the local parameterization.

3For convenience, we negate both 'r'k’C and 'rf defined in the body of
this paper.



Proposition 4 Define

gt gt gt 2 gt

J _ _pk,mpk,y 1+ pk,:c _pk,y
ke = ¢ 2 t gt t
11— gt g g

pk,y pk,wpk,y pk,w

J 1 10 —p,
ke — 3D _ g{f
pifz 0 1 pk»@l

The derivatives ofr%t(pk) = r¥ are given by

orl ork ork
<<9yk’ Be 8c) = (I2, = Jke; —Jk2)

£

The derivatives of %, ,(v.) = 7& are given by

( oré oré ort

6‘y 5 Je 5 e ) = (127Jet,c - Jes,mJet,E_ JeS,E)~

Moreover, the derivatives of 5 are given by

ors ndt — ngt gt T
= v o= DLy : (18)
ays _(ng - Tlg qsl,x)
ors _ N N T
o = (e x (@l x a%)) - (19)

— ~qgt .
where 19" = Rm,. = (ng",nd",nd")", q¥; is homogeneous

. t . . . . .
coordinate of q%; normalized by camera intrinsic matrix.

Proof. See Section 3.4.1. [

Let y collect all the random variables in a vector. Let
Jx, Jg, and Js collect the Jacobi matrices for the predicted
elements under each type in its column. Note that the size of
Js is 3 x 3 according to the derivations above. To facilitate
the definition below, we reshape Js as a 6 x 6 matrix by
placing original elements to the upper-left corner, and zeros
to elsewhere. Denote ¢ and Ss as the weight in front of
each term (without loss of generality, we set Sx = 1). Then
the variance matrix Var(c, €) can be approximated by

Var(c, ) ~ A~ BVar(y)BT A~! (20)
where

A=JicJi + BeJeJg + BsJsJE
B :=(Jk, Be e, BsJs)
It we consider A~! BVar(y) BT A~ as a function of 3¢ and

Bs and compute its derivatives at S¢ = 0 and 8s = 0, we
obtain

OA~IBVar(y)BT A1
0Bs
=A" N (JeZex i + JcSxe i
— JeJF A7 ISk die — IS e AT e JE) AT

where Y and Y g are the corresponding components in
Var(y). This means whenever

Jng;cJ% + J}(E}ngg
<Je JFAT e Sienc JE 4 IS JEAT VT JE, 21)

increasing the value of ¢ from zero is guaranteed to obtain
a positive reduction in the variance matrix (in terms of both
the trace-norm and the spectral-norm).

(21) is satisfied when X = I and X = 0. In gen-
eral, when y, and y, are uncorrelated, then it is likely that
increasing its value can lead to reduction in the output vari-
ance matrix.

A very similar argument can be applied to Ss, and we
omit the details for brevity.

3.3. An Example

We proceed to provide an example that explicitly shows
how the variance of Var([c, €]) is reduced by incorporating
edge vectors and symmetry correspondences. To this end,
we consider a simple object that is given by a square, whose
normal direction is along the z-axis in the camera coordinate
system. We assume this square object has eight keypoints,
whose z coordinates are all 1, i.e., pif’jD =1,1<k <8
Their z and y image coordinates are:

pi' =(5,0), p§ =(5,0), p§ =(6-9),
pit = (0a5)7 Pgt = (Oa _6)7 p6gt = (_6’ 5)’
pgt = (_67 0)7 pgt = (_67 _5)

Moreover, assume that the normal to the reflection plane is
(1,0,0). The ground-truth symmetry correspondences are
dense, and they are in the form of (z, y) and (—x, y), where
0<z<1,-1<y< 1.

With this setup and after simple calculations, we have

8
1 T
Hy =g ;—1: JT T

C1 (5) 0 0 0 —C2 (5) 0
0 @) 0 @ o0 0
N 0 0o 122 9 0 0
0 e 0 1 0 0
—e(8) 0 0 0 1 0

0 0 0 0 0o L2

where ¢, () = SH120541007 and ¢y (§) = 8460



Likewise, we have

He = 28ZJT

dst 0 0 00 0
0o Y 0 00 0
| o 0 2462 00 0
1 o 0 0 00 0
0 0 0 00 0
0 0 0 0 0 24

Finally, we have

1

1
He = / ( / J7 Jdy)de, 0:0,0]
0

-1

ol

coocoocoo
coooo O
O
cooo, o0
coocooo
coocoocoo
coocoocoo

We proceed to assume the following noise model for the
input:

Var(y,) = ok l2,  Var(y,) = 0glo, Var(ys) = 05.
In other words, noises in different predictions are indepen-
dent.

Applying Prop. 3.4.3, we have that

Var([c, €])
~(Hx + AHg + pHg) !

(02Hy + N202He + 20k Hs)-

(Hi + A\Hg + pHg) ™

aiz 0 0 0 ao
0 as 0 a4 0
0 0 a 0O O
0 Q4 0 Qg 0
as 0 0 0 ar
0 0 0 0 O oag

(22)

SO o oo

a;,1 < i < 8 are functions of 4, B¢, s and 0%, 02, 0%. For
simplify, we only analyze ag, which is

021252 4 5203245
0% + Pgog =0

G By

It is easy to check that to minimize ag, the optimal value for
B¢ is given by

In other words, incorporating edge vectors is helpful for re-
ducing the velocity of the third dimension of the rotational
component.

Similar analysis can be done for other a;. As the ratio-
nale is similar, we omit them for brevity.
Contributions of keypoints, edge vectors, and symme-
try correspondences. It is very interesting to study the
structure of (22). First of all, all elements are relevant to
keypoints. Edge vectors provide full constraints on the un-
derlying rotation. Symmetry correspondences also provide
constraints on two dimensions of the underlying rotation.
However, by analyzing the structure of H¢ and Hy, one can
see that they do not provide constraints on two dimensions
of the underlying translation (albeit on this simple model).
This explains why only using edge vectors and symmetry
correspondences leads to poor results on object translations.

3.4. Proof of Propositions

3.4.1 Proof of Proposition 4

Derivatives of 7} and r¢. It is straightforward to compute
the derivatives of X and ¢ with respect to y, and y,,
respectively. In the following, we focus on the derivatives
of i with respect to (¢, €). The derivatives of r¢ can be
obtained by subtracting those of 7% -~ and those of rk

Recall the local parameterlzatlon R= exp(cx)Rgt and
t =t9" +¢. We have

op, 0@l +cxpi +e)

de,e) d(c, €)
= (_ﬁitxv-[3)~
Using chain rule, we have
K apk,m a 3D
ory 1 (| 2o |- Pra ) &)
d(c,e) pth3D g(zm% Dy d(c, )

or—pgfypm% 0 0

— k,z
-1 0 pf, 0 p% 0

k,z
e ) (oty e 0 00 )
pk,y "
Derivatives of r;. Again using chain rule, we have
ors _ ( (qgi x e1)Tn9t ) _ ( ngt — ngtqsly )
ays (qgl X 62)T,ngt 7(ngt ngtqsl m)

Moreover,

ors _ adet((§% x %, ¢,n))

S

de Oc

. gt
=nX (qsl X qly)-



3.4.2 Proof of Proposition 2

Proof: First of all, any optimal solution x*(y) is a critical
point of f. Therefore, it shall satisfy:

g—i(ﬂc*, y) =0. (23)
Consider a neighborhood, where ||y|| < €1, and ||z| <
€2. €9 is chosen so that it contains for each y, the critical
point with the smallest norm. Assume that g% is positive
semidefinite in this neighborhood.

By contradiction, suppose there exists two distinctive lo-
cal minimums 1 (y) and x1 (y) for a given v, i.e.,

% e - Lt 0. @

Through integration, (24) yields

1
/8—f xy +t(xy — 1), y) (X2 — 21)dl
0

1
/aif 1 +t 27$1),y)dt)'($27$1)
0

Since the weighted sum of positive definite matrices is also
positive definite. It follows that

1
/67f$1+tf132—2l31) )dt>0
0

In other words, it cannot have a zero eigenvalue, with non-
zero eigenvector &2 — 1. In other words, the critical point
is unique. Since the second order derivatives are positive
definite, then each critical point is also a local minimum.
Computing the derivatives of (23) with respect to y, we
obtain
0?f ox* o0 f
0%z Oy * O0xdy

=0 (25)

3.4.3 Proof of Proposition 3

The proof is straight-forward as r;(0,0) = 0, and

oz ~ Bia Ox’

o \/ﬂ?,zﬂlml\z) _ Bi1 . or;
Oy Bi2 Oy’
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