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This is the supplemental material to “HybridPose: 6D
Object Pose Estimation under Hybrid Representations”. We
provide detailed explanations to our the algorithm used in
the initialization sub-module. We also conduct a stabil-
ity analysis of the refinement sub-module, and show how
the optimal solution to the the objective function changes
with respect to noise in predicted representations. In addi-
tion, we present an ablation study on Linemod [1] dataset.
While keypoints alone already achieve reasonable pose es-
timation performance on Linemod, utilizing symmetry cor-
respondences and edge vectors lead to slight improvements.

1. Initial Solution for Pose Regression
Recall that we denote 3D keypoint coordinates in the

canonical coordinate system as pk, 1 ≤ k ≤ |K|. To make
notations uncluttered, we denote output of the first module,
i.e., predicted keypoints, edge vectors, and symmetry cor-
respondences as pk ∈ R2, 1 ≤ k ≤ |K|, ve ∈ R2, 1 ≤
e ≤ |E|, and (qs,1 ∈ R2, qs,2 ∈ R2), 1 ≤ s ≤ |S|, respec-
tively. Our formulation also uses the homogeneous coordi-
nates p̂k ∈ R3, v̂e ∈ R3,q̂s,1 ∈ R3 and q̂s,2 ∈ R3 of pk,
ve, qs,1 and qs,2 respectively. The homogeneous coordi-
nates are normalized by camera intrinsic matrix.

1.1. Three constraints for object pose.

We seek to generalize the EPnP algorithm which only ex-
ploits keypoint 2D-3D correspondences for pose estimation
by leveraging hybrid representations, keypoint, edge vector
and symmetry correspondence. To this end, we introduce
the following difference vectors for each type of predicted
elements:

rKR,t(pk) := p̂k × (Rpk + t), (1)

rER,t(ve,pes) := v̂e × (Rpet + t) + p̂es × (Rve), (2)

rSR,t(qs,1, qs,2) := (q̂s,1 × q̂s,2)TRnr. (3)

where es and et are end vertices of edge e, ve = pet−pes ∈
R3, and nr ∈ R3 is the normal of the reflection symmetry
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plane in the canonical system.

Proposition 1 If there is a perfect alignment between the
predicted elements and the corresponding 3D keypoint tem-
plate with respect to the ground-truth pose R?, t?. Then

rKR?,t?(pk) = 0, rER?,t?(vepes) = 0, rSR,t(qs,1, qs,2) = 0

Proof:

1. The proof of the first equality is straight-forward as
there exists a “depth” λk > 0 so that

λkp̂k = R?pk + t?

It follows that

0 = λkp̂k × p̂k = p̂k × (R?pk + t?)

2. The proof of the second equality follows the first
equality. So we have

p̂es × (R?pes + t?) = 0 p̂et × (R?pet + t?) = 0

Replacing p̂et by v̂e + p̂es , we have

v̂e × (R?pet + t?) + p̂es × (R?pet + t?) = 0

Replacing the second pet by ve + pes in the above
equation, we have

v̂e × (R?pet + t?) + p̂es ×R
?ve = 0

3. To prove the third equality, define the depths of q̂s,1
and q̂s,2 as λs,1 and λs,2 and the corresponding 3D
model points in the canonical system as qs,1 and qs,2.
ps is a point on the reflectional symmetry plane, whose
normal is nr. Given a symmetry correspondence pair
(qs,1,qs,2), we have

qs,2 = (I3 − 2nrn
T
r )qs,1 + 2nrn

T
r ps (4)
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Let Rs = I3−2nrn
T
r , ts = 2nrn

T
r ps. Following the

camera perspective model, we have

λs,1q̂s,1 = R?qs,1 + t?

λs,2q̂s,2 = R?Rsqs,1 +R?ts + t?

Subtracting these two equations, we have

λs,2q̂s,2 − λs,1q̂s,1 = R?(Rsqs,1 + ts − qs,1)

Left multiply both sides of the equation by q̂s,2×
yields

− λs,1q̂s,2 × q̂s,1 = q̂s,2 × [R?(Rsqs,1 + ts − qs,1)]
(5)

Geometrically, (5) reveals that q̂s,2 × q̂s,1 is perpen-
dicular to the plane with span of {qs,2, R?(Rsqs,1 +
ts − qs,1)}, thus we have

(q̂s,2 × q̂s,1)TR?(Rsqs,1 + ts − qs,1) =

2(nT
r (ps − qs,1))(q̂s,2 × q̂s,1)TR?nr = 0

Since 2(nT
r (ps − qs,1)) is a non-zero scalar, we can

delete this term and finally get

(q̂s,2 × q̂s,1)TR?nr = 0

1.2. Pose solution in eigenvector space.

A nice feature shared by (1), (2) and (3) is that all con-
straints are linear in the elements of R and t. This al-
lows us to derive a closed-form solution of R and t in
the affine transformation space. Specifically, we can define
x = (rT

1 , r
T
2 , r

T
3 , t

T)T
12×1 as a vector that contains rotation

and translation parameters in affine space. Expanding con-
straint (1) and constraint (2) yields three linear equations for
each predicted element respectively for x, and expanding
constraint (3) yields one linear equation. By concatenating
all linear equations of predicted elements together, we can
generate a linear system of the form Ax = 0, where A is
matrix and its dimension is (3|K|+ 3|E|+ |S|)× 12.

To model the relative importance among keypoints, edge
vectors, and symmetry correspondences, we rescale (2) and
(3) by hyper-parameters αE and αS , respectively, to gener-
ate A. As discussed in the body of this paper, we calculate
αE and αS by solving an optimization problem using finite-
difference and back-track line search.

Then following EPnP [2], we compute x as

x =

N∑
i=1

γivi (6)

where vi is the ith smallest right singular vector of A. Ide-
ally, when predicted elements are noise-free, N = 1 with
x = v1 is an optimal solution. However, this strategy per-
forms poorly given noisy predictions. Same as EPnP [2],
we choose N = 4.

1.3. Optimize a good linear combination.

To compute the optimal x, we optimize latent variables
γi and the rotation matrix R with following objective func-
tion:

min
R∈R3×3,γi

‖
4∑
i=1

γiRi −R‖2F (7)

where Ri ∈ R3×3 is reshaped from the first 9 elements of
vi. We solve this optimization problem with the following
alternating procedure:

1. Fix γi and solve for R by SVD. i.e. R =
Udiag(1, 1, 1)V T given

∑4
i=1 γiRi = UΣV T1,

2. Fix R and solve for γi’s by optimizing a linear system∑4
i=1 γiRi = R in an element-wise manner.

To initialize γi’s for the above optimization problem, we
calculate γi with i = 1...3 by enforcing that

∑3
i=1 γiRi is

an orthogonal matrix2:

(

3∑
i=1

γiRi)
T

3∑
i=1

γiRi = I3 (8)

Since I3 is a symmetric matrix, expanding (8) yields 6
nonlinear constraints for γ = (γ1, γ2, γ3)T, which is how-
ever uneasy to solve. We then define a new vector y =
(y1, y2, y3, y4, y5, y6)T = (γ2

1 , γ1γ2, γ1γ3, γ
2
2 , γ2γ3, γ

2
3)T

and form a linear system Cy = z which has the unique
solution with z generated from I3. Afterwards, it is easy
to recover γi from y and optimize from initialized γi alone
with γ4 = 0.

After optimization, we again apply SVD to project∑4
i=1 γiRi onto the space of SO(3), i.e., Rinit =

Udiag(1, 1, 1)V T and enforce det(Rinit) > 0 where
Rinit = UΣV T . Leveraging Ax = 0 defined in section
(1.2), the corresponding translation tinit is

tinit = −(AT
2 A2)−1AT

2 A1r
init (9)

whereA1 = A[:,1:9],A2 = A[:,10:12], rinit9×1 is reshaped from
Rinit.

2. Ablation Study on Linemod Dataset
Table 1 summarizes the performance of HybridPose

using different predicted intermediate representations on
Linemod dataset. The overall relative performance is simi-
lar to that on Occlusion-Linemod. Specifically, adding sym-
metry correspondences can boost the performance of rota-
tions. Adding edge vectors can significantly boost the per-
formance of both rotations and translations. Moreover, such

1If det(R) < 0 we enforce det(R) > 0 by defining R =
Udiag(1, 1,−1)V T.

2The reason of initializing 3 γi’s is that (8) is unable to provide enough
linear constraints for 4 γi’s and this initialization ensures the convergence
of optimization.



keypoints keypoints + symmetries full model
Rotation Translation Rotation Translation Rotation Translation

ape 1.122° 0.085 1.064° 0.090 0.808° 0.055
benchvise 1.319° 0.039 1.194° 0.037 0.657° 0.015

cam 1.310° 0.058 1.203° 0.058 0.716° 0.025
can 1.323° 0.053 1.210° 0.053 0.696° 0.024
cat 1.127° 0.062 1.031° 0.062 0.696° 0.029

driller 1.387° 0.037 1.294° 0.034 0.792° 0.019
duck 1.052° 0.080 1.038° 0.080 0.710° 0.044

eggbox 1.599° 0.072 1.317° 0.056 0.740° 0.029
glue 1.064° 0.053 1.063° 0.053 0.759° 0.026

holepuncher 1.351° 0.076 1.188° 0.073 0.709° 0.034
iron 1.629° 0.038 1.456° 0.039 0.769° 0.016
lamp 1.606° 0.036 1.321° 0.036 0.740° 0.020
phone 1.093° 0.038 1.093° 0.038 0.695° 0.021
mean 1.306° 0.056 1.190° 0.055 0.730° 0.028

Table 1. Qualitative evaluation with different intermediate representations (Linemod). We report errors using two metrics: the median
of absolute angular error in rotation, and the median of relative error in translation with respect to object diameter.

improvements are consistent when starting from only using
keypoints and when starting from combing keypoints and
edge vectors.

3. Stability Analysis for Pose Refinement
In this section, we provide a local stability analysis of

the pose regression procedure, which amounts to solving
the following optimization problem:

min
R,t

|K|∑
k=1

ρ(‖rKR,t(pk)‖, βK)‖rKR,t(pk)‖2Σk

+
|K|
|E|

|E|∑
e=1

ρ(‖rER,t(ve)‖, βE)‖rER,t(ve)‖2Σe

+
|K|
|S|

|S|∑
s=1

ρ(rSR,t(qs,1, qs,2), βS) (10)

When predictions are accurate, then the optimal solution
of the objective function described above should recover
the underlying ground-truth. However, when the predic-
tions possess noise, then the optimal object pose can drift
from the underlying ground-truth. Our focus is local anal-
ysis, which seeks to understand the interplay between dif-
ferent objective terms defined by keypoints, edge vectors,
and symmetry correspondences. Therefore, we assume the
noise level of the input is small, and the perturbation of the
output is well captured by low-order Taylor expansion of
the output.

Our goal is to characterize the relation between the vari-
ance of the input noise and the variance of the output pose.
We show that incorporating edge vectors and symmetry cor-
respondences generally help to reduce the variance of the
output.

The remainder of this section is organized as follows.
In Section 3.1, we provide a local stability analysis frame-
work for regression problems. In Section 3.2, we describe
the structure of the pose regression and apply this frame-
work to provide a preliminary analysis of the stability of
pose regression. In Section 3.3, we provide further analy-
sis on a specific example, which indicates the interactions
among keypoints, edge vectors, and symmetry correspon-
dences. Finally, Section 3.4 provide proofs of the proposi-
tions in this analysis.

3.1. Local Stability Analysis Framework

We begin with a general result regarding an optimization
problem of the following form

x?(y) := argmin
y

f(x,y). (11)

In the context of this paper, y encodes the noise associated
with the predictions, i.e., keypoints, edge vectors, and sym-
metry correspondences. x ∈ R6 provides a local parame-
terization of the output, i.e., the object pose. The specific
expressions of y and x will be described in Section 3.2.

Without losing generality, we further assume that f sat-
isfies the following assumptions (which are valid in the con-
text of this paper):

• f(x,y) ≥ 0. Moreover, f(x,y) = 0 if and only if
x = 0 and y = 0. This means x?(0) = 0, and (0,0)
is the strict global optimal solution.

• f is smooth and at least C3 continuous.

• The following Hessian matrix is positive definite in
some local neighborhood of (0,0):[

∂2f
∂2x

∂2f
∂x∂y

∂2f
∂x∂y

∂2f
∂2y

]
.



Our analysis will utilize the following partial derivative
of x? with respect to y.

Proposition 2 Under the assumptions described above,
x?(y) is unique in the local neighborhood of 0, and

∂x?

∂y
(y) := −

(∂2f

∂2x
(x?(y),y)

)−1 ∂2f

∂x∂y
(x?(y),y).

(12)

Proof. See Section 3.4.2. �
Since we are interested in local stability analysis, we as-

sume the magnitude of y is small. Thus,

x?(y) ≈ ∂x?

∂y
(0) · y. (13)

If we further assume y follows some random distribution
whose variance matrix if Var(y). Then the variance of the
output x? is given by

Var(x?(y))

≈
(∂2f

∂2x

)−1 · ∂
2f

∂x∂y
· Var(y)(

∂2f

∂x∂y
)T
(∂2f

∂2x

)−1
. (14)

Note that in our problem, f consists of non-linear least
squares, i.e.,

f =
∑ β2

i,1 · ‖ri‖2Σi

β2
i,2 + ‖ri‖2

. (15)

The following proposition characterizes how to compute
∂2f
∂2x and ∂2f

∂x∂y .

Proposition 3 Under the expression described in (15), the
second-order derivatives ∂2f

∂2x and ∂2f
∂x∂y at (0,0) are given

by

∂2f

∂2x
=
∑
i

β2
i,1

β2
i,2

∂ri
∂x

Σi
∂ri
∂x

T

(16)

∂2f

∂x∂y
=
∑
i

β2
i,1

β2
i,2

∂ri
∂x

Σi
∂ri
∂y

T

(17)

Proof. See Section 3.4.3. �

3.2. Structure of Pose Stability

We begin by rephrasing the pose-regression problem de-
scribed in the main paper.
Ground-truth setup. We use the same definition of vari-
ables as that in full paper. Recall that pk is coordinates
of keypoint in canonical system. Let Rgt and tgt be the
ground-truth pose. Then the ground-truth 3D location of pk
in the camera coordinate system is

pgtk = Rgtpk + tgt , 1 ≤ k ≤ |K|.

Let pgtk = (pgt,3Dk,x , pgt,3Dk,y , pgt,3Dk,z )T . Then the ground-truth
image coordinates of the projected keypoint pgtk ∈ R2 is
given by

pgtk = (
pgt,3Dk,x

pgt,3Dk,z

,
pgt,3Dk,y

pgt,3Dk,z

)T = (pgtk,x, p
gt
k,y)T .

Likewise, recall (qs1, qs2) are symmetry correspondence in
the world coordinate system, and let

qgts1 := Rgtqs1 + tgt

qgts2 := Rgtqs2 + tgt

denote the transformed points in the camera coordinate sys-
tem, where qgtsi = (qgt,3Dsi,x , qgt,3Dsi,y , qgt,3Dsi,z )T . So the image
coordinates of each symmetry correspondence are given by

qgts1 = (
qgt,3Ds1,x

qgt,3Ds1,z

,
qgt,3Ds1,y

qgt,3Ds1,z

)T , qgts2 = (
qgt,3Ds2,x

qgt,3Ds2,z

,
qgt,3Ds2,y

qgt,3Ds2,z

)T .

Noise model. we proceed to describe the noise model used
in the stability analysis. In this analysis, we assume each
input keypoint is perturbed from the ground-truth location
by yk = (yk,x, yk,y)T , i.e.,

pk = pgtk + yk.

Likewise, we assume each input edge vector is perturbed
from the ground-truth edge vector by ye = (ye,x, ye,y)T ,
i.e.,

ve = pgtes − p
gt
et + ye.

Finally, for symmetry correspondences, we assume that
qs1 is not perturbed), and qs2 is perturbed by ys =
(ys,x, ys,y)T , i.e.,

qs1 = qgts1, qs2 = qgts2 + ys.

Local parameterization. We parameterize the 6D object
pose locally using exponential map with coefficients (c ∈
R3, c ∈ R3), i.e.,

R = exp(c×) ·Rgt , t = tgt + c.

Note this parameterization is quite standard for rigid trans-
formations.

Now consider the three terms used in pose regression3:

rKk := pk − PR,t(pk),

rEe := ve − (PR,t(pes)− PR,t(pet)),
rSs := (q̂s,1 × q̂s,2)TRnr.

The following proposition characterizes the derivatives
between each term and the parameters of the noise model
and the parameters of the local parameterization.

3For convenience, we negate both rK
k and rE

e defined in the body of
this paper.



Proposition 4 Define

Jk,c =

(
−pgtk,xp

gt
k,y 1 + pgtk,x

2 −pgtk,y
−1− pgtk,y

2
pgtk,xp

gt
k,y pgtk,x

)

Jk,c =
1

pgt,3Dk,z

(
1 0 −pgtk,x
0 1 −pgtk,y

)

The derivatives of rKR,t(pk) = rKk are given by(
∂rKk
∂yk

,
∂rKk
∂c

,
∂rKk
∂c

)
= (I2,−Jk,c,−Jk,c)

The derivatives of rER,t(ve) = rEe are given by(
∂rEe
∂ye

,
∂rEe
∂c

,
∂rEe
∂c

)
= (I2, Jet,c − Jes,c, Jet,c − Jes,c).

Moreover, the derivatives of rSs are given by

∂rSs
∂ys

=

(
ngty − ngtz q

gt
s1,y

−(ngtx − ngtz q
gt
s1,x)

)T
, (18)

∂rSs
∂c

=
(
nr × (q̂gts1 × q̂

gt
s2)
)T
. (19)

where ngt = Rnr = (ngtx , n
gt
y , n

gt
z )T , q̂gtsi is homogeneous

coordinate of qgtsi normalized by camera intrinsic matrix.

Proof. See Section 3.4.1. �
Let y collect all the random variables in a vector. Let

JK, JE , and JS collect the Jacobi matrices for the predicted
elements under each type in its column. Note that the size of
JS is 3× 3 according to the derivations above. To facilitate
the definition below, we reshape JS as a 6 × 6 matrix by
placing original elements to the upper-left corner, and zeros
to elsewhere. Denote βE and βS as the weight in front of
each term (without loss of generality, we set βK = 1). Then
the variance matrix Var(c, c) can be approximated by

Var(c, c) ≈ A−1BVar(y)BTA−1 (20)

where

A :=JKJ
T
K + βEJEJ

T
E + βSJSJ

T
S

B :=(JK, βEJE , βSJS)

It we considerA−1BVar(y)BTA−1 as a function of βE and
βS and compute its derivatives at βE = 0 and βS = 0, we
obtain

∂A−1BVar(y)BTA−1

∂βE

:=A−1
(
JEΣEKJ

T
K + JKΣKEJ

T
E

− JEJTE A−1JKΣKKJ
T
K − JKΣKKJ

T
KA
−1JEJ

T
E
)
A−1.

where ΣKK and ΣEK are the corresponding components in
Var(y). This means whenever

JEΣEKJ
T
K + JKΣKEJ

T
E

≺JEJTE A−1JKΣKKJ
T
K + JKΣKKJ

T
KA
−1JEJ

T
E , (21)

increasing the value of βE from zero is guaranteed to obtain
a positive reduction in the variance matrix (in terms of both
the trace-norm and the spectral-norm).

(21) is satisfied when ΣKK = I and ΣKE = 0. In gen-
eral, when yk and ye are uncorrelated, then it is likely that
increasing its value can lead to reduction in the output vari-
ance matrix.

A very similar argument can be applied to βS , and we
omit the details for brevity.

3.3. An Example

We proceed to provide an example that explicitly shows
how the variance of Var([c, c]) is reduced by incorporating
edge vectors and symmetry correspondences. To this end,
we consider a simple object that is given by a square, whose
normal direction is along the z-axis in the camera coordinate
system. We assume this square object has eight keypoints,
whose z coordinates are all 1, i.e., pgt,3Dk,z = 1, 1 ≤ k ≤ 8.
Their x and y image coordinates are:

pgt1 = (δ, δ), pgt2 = (δ, 0), pgt3 = (δ,−δ),
pgt4 = (0, δ), pgt5 = (0,−δ), pgt6 = (−δ, δ),

pgt7 = (−δ, 0), pgt8 = (−δ,−δ)

Moreover, assume that the normal to the reflection plane is
(1, 0, 0). The ground-truth symmetry correspondences are
dense, and they are in the form of (x, y) and (−x, y), where
0 ≤ x ≤ 1,−1 ≤ y ≤ 1.

With this setup and after simple calculations, we have

HK :=
1

8

8∑
k=1

JTk Jk

=



c1(δ) 0 0 0 −c2(δ) 0
0 c1(δ) 0 c2(δ) 0 0

0 0 12δ2

8 0 0 0
0 c2(δ) 0 1 0 0

−c2(δ) 0 0 0 1 0

0 0 0 0 0 12δ2

8



where c1(δ) = 8+12δ2+10δ4

8 , and c2(δ) = 8+6δ2

8 .



Likewise, we have

HE :=
1

28

28∑
e=1

JTe Je

=



11
7 δ

4 0 0 0 0 0
0 11

7 δ
4 0 0 0 0

0 0 24
7 δ

2 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 24

7 δ
2


Finally, we have

HS :=[

∫ 1

0

(

∫ 1

−1

JTs Jsdy)dx, 0; 0, 0]

=


0 0 0 0 0 0
0 4

3δ
2 0 0 0 0

0 0 4
9δ

4 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


We proceed to assume the following noise model for the

input:

Var(yk) = σ2
KI2, Var(ye) = σ2

EI2, Var(ys) = σ2
S .

In other words, noises in different predictions are indepen-
dent.

Applying Prop. 3.4.3, we have that

Var([c, c])

≈(HK + λHE + µHS)−1·
(σ2
KHK + λ2σ2

EHE + µ2σ2
SHS)·

(HK + λHE + µHS)−1

=


a1 0 0 0 a2 0
0 a3 0 a4 0 0
0 0 a5 0 0 0
0 a4 0 a6 0 0
a2 0 0 0 a7 0
0 0 0 0 0 a8

 (22)

ai, 1 ≤ i ≤ 8 are functions of δ, βE , βS and σ2
K, σ

2
E , σ

2
S . For

simplify, we only analyze a8, which is

a8 =
σ2
K

12
8 δ

2 + β2
Eσ

2
E

24
7 δ

2(
12
8 δ

2 + 24
7 βEδ

2
)2

It is easy to check that to minimize a8, the optimal value for
βE is given by

βE =
σ2
K
σ2
E
.

In other words, incorporating edge vectors is helpful for re-
ducing the velocity of the third dimension of the rotational
component.

Similar analysis can be done for other ai. As the ratio-
nale is similar, we omit them for brevity.
Contributions of keypoints, edge vectors, and symme-
try correspondences. It is very interesting to study the
structure of (22). First of all, all elements are relevant to
keypoints. Edge vectors provide full constraints on the un-
derlying rotation. Symmetry correspondences also provide
constraints on two dimensions of the underlying rotation.
However, by analyzing the structure ofHE andHK, one can
see that they do not provide constraints on two dimensions
of the underlying translation (albeit on this simple model).
This explains why only using edge vectors and symmetry
correspondences leads to poor results on object translations.

3.4. Proof of Propositions

3.4.1 Proof of Proposition 4

Derivatives of rKk and rEe . It is straightforward to compute
the derivatives of rKk and rEe with respect to yk and ye,
respectively. In the following, we focus on the derivatives
of rKk with respect to (c, c). The derivatives of rEe can be
obtained by subtracting those of rKes and those of rKet .

Recall the local parameterization R = exp(c×)Rgt and
t = tgt + c. We have

∂pk
∂(c, c)

=
∂(pgtk + c× pgtk + c)

∂(c, c)

= (−pgtk ×, I3).

Using chain rule, we have

∂rKk
∂(c, c)

= − 1

pgt,3Dk,z

(

 ∂p3Dk,x

∂(c,c)
∂p3Dk,y

∂(c,c)

− ( pk,x
pk,y

)
·
∂p3D

k,z

∂(c, c)
)

= −

 0 1 −pgtk,y
1

pgt,3Dk,z

0 0

−1 0 pgtk,x 0 1

pgt,3Dk,z

0


+

(
pgtk,x
pgtk,y

)
·
(
pgtk.y −pgtk,x 0 0 0 1

pgt,3Dk,z

)
Derivatives of rs. Again using chain rule, we have

∂rSs
∂ys

=

(
(q̂gts1 × e1)Tngt

(q̂gts1 × e2)Tngt

)
=

(
ngty − ngtz q

gt
s1,y

−(ngtx − ngtz q
gt
s1,x)

)
Moreover,

∂rSs
∂c

=
∂det((q̂gts1 × q̂

gt
s2, c,n))

∂c
= n× (q̂gts1 × q̂

gt
s2).



3.4.2 Proof of Proposition 2

Proof: First of all, any optimal solution x?(y) is a critical
point of f . Therefore, it shall satisfy:

∂f

∂x
(x?,y) = 0. (23)

Consider a neighborhood, where ‖y‖ ≤ ε1, and ‖x‖ ≤
ε2. ε2 is chosen so that it contains for each y, the critical
point with the smallest norm. Assume that ∂2f

∂2x is positive
semidefinite in this neighborhood.

By contradiction, suppose there exists two distinctive lo-
cal minimums x1(y) and x1(y) for a given y, i.e.,

∂f

∂x
(x1(y),y) =

∂f

∂x
(x2(y),y) = 0. (24)

Through integration, (24) yields

0 =

1∫
0

∂2f

∂2x
(x1 + t(x2 − x1),y)(x2 − x1)dt

=
( 1∫

0

∂2f

∂2x
(x1 + t(x2 − x1),y)dt

)
· (x2 − x1)

Since the weighted sum of positive definite matrices is also
positive definite. It follows that

1∫
0

∂2f

∂2x
(x1 + t(x2 − x1),y)dt � 0.

In other words, it cannot have a zero eigenvalue, with non-
zero eigenvector x2 − x1. In other words, the critical point
is unique. Since the second order derivatives are positive
definite, then each critical point is also a local minimum.

Computing the derivatives of (23) with respect to y, we
obtain

∂2f

∂2x
· ∂x

?

∂y
+

∂2f

∂x∂y
= 0 (25)

3.4.3 Proof of Proposition 3

The proof is straight-forward as ri(0,0) = 0, and

∂(
βi,1ri√
β2
i,2+‖ri‖2

)

∂x
=
βi,1
βi,2
· ∂ri
∂x

,

∂(
βi,1ri√
β2
i,2+‖ri‖2

)

∂y
=
βi,1
βi,2
· ∂ri
∂y

.
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