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1 Selection of the encoder through hyper-parameter search

We estimate the ’training capacity’ of P&C network according to recognition accuracy of untrained networks
(P&C Rand) and select the best performing model as a baseline for training. As we describe in the main
manuscript, due to the clustering properties of random encoder-decoder networks, there could be variations
of P&C Rand achieving reasonable baseline performance. In examination of the variants we define the
following hyper-parameters: types of recurrent cells (uni-, bi-, GRU, LSTM), number of neurons, number
of layers, weights initialization and maximum length of input sequence. We show the evaluation of the
hyper-parameter search for NW-UCLA dataset[4] in Fig. 1.

Figure 1: Accuracy of various random network architectures for UCLA dataset.

Specifically, in the hyper-parameter search we consider 4 encoder architectures: Bi-directional GRU,
Bi-directional LSTM, Uni-directional GRU and Uni-directional LSTM and select the appropriate number
of neurons and layers by evaluating the recognition performance of the randomized encoder. Bi-directional
architectures turn out to achieve better performance than Uni-directional ones. We choose the optimal
configuration, highlighted in Fig. 1: three layers Bi-GRU with 1024 neurons. Notably, since there is no
training involved in the search (forward propagation through the encoder only), the hyper-parameter search
is extremely fast (0.7 sec for one batch with size= 64, i.e., ≈ 2 sec for the whole NW-UCLA dataset).
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We also examine variants of weight initialization. In Fig. 1 we used random uniform initialization ∈
[−0.05, 0.05]) and we compared it with additional variants such as Orthogonal, Random Normal and GloRot
Uniform initializations. We find that there is no significant variation in the initialization type (as we show
in table 1). We choose the best performing initialization (random uniform) for our final P&C Rand model,
however we note that there is no significant difference between the initialization types. Furthermore, we
use the same P&C Rand baseline for all three datasets that we evaluate our P&C system on since this
optimal architecture appears to perform well as a baseline for various datasets. Since the lengths of the

Initialization Random Uniform Orthogonal Random Normal Glorot Uniform
Rand. Accuracy 72.2 71.1 70.2 71.0

Table 1: Comparison of P&C Rand accuracy for various weight initialization for the NW-UCLA dataset.

different action sequences are different we down-sample the sequences to a fixed maximum-length. Therefore,
additional hyper-parameter that we optimize for is the maximum length of the input sequence. We have
estimated the performance of P&C Rand for various maximum sequence lengths for NW-UCLA dataset.
The comparison is shown in Table 2. We obtain that the maximum-length of 50 is the optimal choice for
this parameter.

Maximum Length 10 25 35 50 75 100
Rand. Accuracy 65.4 66.7 69.5 72.2 71.0 70.4

Table 2: Comparison of P&C Rand accuracy for various maximum-length values for the NW-UCLA dataset.

Figure 2: Accuracy(blue) and Loss(red) comparison in all datasets: LongT-GAN(Solid),P&C FW(Dashed)



2 Comparison with LongT-GAN (Unsupervised Skeleton-based
method)

We implement the LongT-GAN network by following the description in [5] and then compare our P&C
approach trained on all three datasets, see Fig. 2. The comparison shows that LongT-GAN performance is
similar to the performance of optimal P&C Rand on these challenging datasets. Notably, the performance of
LongT GAN on motion capture datasets (CMU MoCap1, HDM05 [1] and Berkely MHAD[2]) is much higher
than the performance on the three datasets that we consider. Indeed the latter are markerless (noisy),
include more classes and captured from different views. We believe the reason for the drop in performance
of LongT GAN is due to training the decoder with ground truth mask inputs. This allows the decoder to
perform the prediction well (the main purpose of LngT-GAN system), however, the encoder does not learn
the features needed for separating different types of actions.

This is the reason that we incorporate training strategies based on weakening the decoder, i.e. FW and
FS. Such strategies applied to our P&C network enhance the features learned by the encoder and achieve
higher recognition performance in clustering and recognition.

3 Detailed tables for P&C system performance and limitations

In addition, we include all the different variations of P&C performance on the three datasets in Table 3. In
the main manuscript we have included a subset of these due to space limits (P&C Rand, P&C FS-AEC,
P&C FW-AEC). It can be observed that our training strategies succeed to improve performance from the
baseline for up to 20%. In terms of limitations, it can be seen that lowest improvement in performance is on
the largest dataset NTU RGB-D (60 Classes) cross subject test. This is due to variations of the movement
from subject to subject that the network is unable to fully capture simply from keypoints sequences alone.
Incorporating constraints that dictate particular arrangement of keypoints ( e.g. skeleton graph [3]) could
be a future enhancement of the system for cross subject action recognition.

Method
NW-UCLA

(%)

Unsupervised Skeleton
P&C Rand 72.0
P&C no FS 81.8
P&C no FW 82.9
P&C FS 82.3
P&C FW 83.6
P&C FS-AEC 83.8
P&C FW-AEC 84.9

Method
UWA3D

V3 (%) V4 (%)

Unsupervised Skeleton
P&C Rand 48.5 51.5
P&C no FS 54.6 60.3
P&C no FW 57.1 60.3
P&C FW 58.7 62.3
P&C FS 58.7 63.0
P&C FS-AEC 59.5 63.1
P&C FW-AEC 59.9 63.1

Method
NTU RGB-D 60
CV(%) CS(%)

Unsupervised Skeleton
P&C Rand 56.4 39.6
P&C no FS 74.0 47.3
P&C no FW 74.2 50.4
P&C FW 75.2 50.3
P&C FS 75.3 49.2
P&C FW-AEC 76.1 50.7
P&C FS-AEC 76.3 50.6

Table 3: Comparison of action recognition performance of our P&C system.
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