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In this supplementary material, we provide more infor-
mation of our ablation study as well as additional qualitative
results on the data in the wild.

1. Ablation Study

We provide more thorough ablation study in this section,
including the performance of using poses captured by Dou-
bleFusion [3] and qualitative comparison.

Using Poses Estimated by [3]. In the training of Re-
conNet, we replace the SMPL models estimated by Track-
Net with those captured by DoubleFusion [3] and keep the
other setting as same as Ours(M+SSIM_,). DoubleFusion
utilizes depth sensor to estimate the SMPL models, which
can provide more accurate and stable SMPL coefficients
than the predictions from neural networks with RGB im-
ages as input. We find the more accurate SMPL models
(from DoubleFusion) lead to better performance of Recon-
Net, as shown in Table 1.

Table 1. Ablation study on Tang ef al.’s test set. Please see text for
more details.

Methods Accuracy MAE
1.0cm 2.0cm 4.0cm

Ours(Base Shape) 29.18 | 56.75 | 81.67 | 2.657

Ours(Baseline) 28.14 | 55.57 | 79.46 | 2.828

Ours(M) 28.52 | 56.35 | 80.67 | 2.714

Ours(M+SSIM_) 3147 | 59.08 | 82.13 | 2.609

Ours(Captured Pose) | 31.29 | 59.36 | 83.28 | 2.544

Finetuning the TrackNet. The TrackNet used in the
experiments is finetuned from a original HMR model with
our collected data. SMPL model estimation is not a solved
problem yet. The original HMR model is trained using
manually labeled 2D joints (LSP, COCO, MPII dataset)
and 3D joints captured by MOCAP system (Human3.6M
dataset). The manually labeled 2D joints lack depth infor-
mation, and the data from MOCAP system contains only
8 actors who have to wear MOCAP markers. All these
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Figure 1. Intermediate SMPL models generated by the original
HMR model, our fine-tuned one, and DoubleFusion. It is not a
new experiment but an illustration.

limitations lead to inaccurate SMPL prediction, as shown
in Fig. 1 where the red arrows highlight the inaccurate re-
sults of HMR. Finetuning with additional data can improve
its performance and help the self-supervised training of the
ReconNet.

Qualitative Results. To visually demonstrate the in-
fluence of the accuracy of SMPL models for our self-
supervised learning and the effectiveness of our designed
module for robust photometric loss, we show the quanti-
tative comparison in Figure 2 and Figure 3. Comparing
Ours(Captured Pose) and Ours(M+SSIM_;), we can find
both of them can recover small wrinkles especially for the
main body, but Ours(Captured Pose) can capture more de-
tailed geometry in trousers on examples (a), (b), (e), (h).
Because the limbs are more difficult to track than the main
body by the TrackNet, with more accurate SMPL models,
our ReconNet can be trained with more stable photometric
consistency loss in the limbs part. Without SSIM,, loss,
Ours(M) prefers to generate smoother results, and we can
find there are some artifacts in examples (c), (d), (f). The
baseline results are very noisy and generate lots of wrong
wrinkles. Without validation masks and SSIM_, loss, the
training seems to become unstable.
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Figure 2. Comparison on Tang et al.’s testing datasets. From left to right, they are source image, ground truth, Ours(Captured),
Ours(M+SSIM_;), Ours(M), Ours(Baseline) and Ours(Base Shape).
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Figure 3. Comparison on Tang et al.’s testing datasets.
Ours(M+SSIMc;), Ours(M), Ours(Baseline) and Ours(Base Shape).

2. Qualitative Results on Images in the Wild

We also compare our method with Tang ef al.’s method
[2] and HMD [4] on the images from the COCO dataset [ 1]
and Internet, and the results are shown in Figure 4. From
these results, we can see that our method can recover faith-
ful details with stable layout in all wild images. By compar-
ison, Tang et al.’s method predicts incomplete limbs in (f),
(g) and (n), and doesn’t recover plausible details. HMD suf-
fers from implausible details such as wrinkles in (c), (¢) and

From left to right, they are source image, ground truth, Ours(Captured),

(). The unstable performance of Tang et al.’s method and
HMD indicates their generalization ability is poorer than
our method. For some cases such as (c¢), (d) and (m), we
find the top parts are better estimated than the bottoms parts.
The main reasons can be concluded as follows: 1. The legs
are usually less textured; 2. The SMPL model estimation is
more precise at the main trunk (e.g. chest, waist, and shoul-
ders) than the limbs, which leads to less shape details re-
covered at limbs; 3. Some Internet videos have an overhead
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Figure 4. Comparison on the images in the wild. From left to right, they are source image, ours results, the results of Tang et al. [2] and the
results of HMD [4]. (a) - (f) are from the COCO dataset [!], and (g) - (n) are from Internet.

lighting which makes the photometric consistency insuffi-
cient for the bottom part.



3. Results on Videos in the Wild

Our per-frame recovered depth on the videos in the wild

are shown in the supplementary video. Our method pre-
dicts stable details and wrinkles for most of the wild videos,
while the minor flaw is the unstable base shape prediction
in the last sequence. By comparison, Tang et al.’s method
[2] fails to predict complete limbs in many complex poses,
and also recovers poorer details.
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