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A. Other implementation details
Other implementation details are as follows: 1) the mo-

mentum is set to 0.9; 2) the weight decay is set to 0.0001;
3) the batch size is set to 64; 4) the number of training
epochs is set to 200; 5) for each trial, we follow [13]
and use the best-performing clustering model as the test
model; 6) data augmentations of random crop and horizon-
tal flip are applied during training; 7) the number of the
task-specific FC layers of the base network is set to 2 (i.e.
2048→ 512→ K), where the first FC layer is the so-called
bottleneck layer [3, 13, 27]; 8) we perform discriminative
clustering in the bottleneck feature space as additional reg-
ularization; 9) we implement our experiments in PyTorch.

Our proposed SRDC simultaneously learns parameters
of the feature embedding function θ, the classifier ϑ, and
the learnable cluster centers {µk}Kk=1 by minimizing the
structurally regularized deep clustering objective (11). Note
that we re-initialize {µk}Kk=1 at the start of each training
epoch based on the current cluster assignments of {zti}

nt
i=1

together with labeled source {zsj}
ns
j=1; the introduced aux-

iliary distributions qti,k = q̃ti,k = I[k = ŷti ] for i ∈
{1, 2, . . . , nt} and k ∈ {1, 2, . . . ,K} at the first training
epoch, where ŷti is the assigned class label by standard K-
means clustering on the embedded target features {zti}

nt
i=1;

the weights {ws
j}

ns
j=1 are set to 1 at the first training epoch.

For the K-means, the target cluster centers are initialized as
the class centroids of the source data. Training algorithm of
SRDC is given in Algorithm 1.

B. More comparisons
B.1. Comparisons on Office-31

Comparisons with existing methods on Office-31 [19]
using ResNet-50 [7] as the base network are shown in Table
A, where results of existing methods are quoted from their
respective papers or the works of [2, 11, 13, 16]. We can see
that SRDC outperforms all compared methods on almost all
transfer tasks, verifying the effectiveness of SRDC.
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Algorithm 1 Training algorithm for SRDC, E denotes the
training epoch, I denotes the training iteration, Bt and Bs

denote the mini-batches.
Input: unlabeled target samples T = {xt

i}
nt
i=1; labeled

source samples S = {(xs
j , y

s
j )}

ns
j=1

Output: θ,ϑ, {µk}Kk=1

1: Initialize: θ,ϑ, {µk}Kk=1, qti,k = q̃ti,k = I[k = ŷti ] for
i ∈ {1, 2, . . . , nt} and k ∈ {1, 2, . . . ,K}, ws

j = 1 for
j ∈ {1, 2, . . . , ns}, E = 1

2: while not converge do
3: for I ← 1,MAX ITER do
4: Sample Bt and Bs from T and S
5: if E != 1 then
6: Compute qtik and q̃tik by using (2)
7: end if
8: Update θ,ϑ, {µk}Kk=1 by minimizing (11) on

Bt and Bs

9: end for
10: Compute {ctk}Kk=1 by standard K-means clustering
11: Compute ws

j = 1, j ∈ {1, 2, . . . , ns} by using (12)
12: Initialize: {µk}Kk=1

13: E = E + 1
14: end while

B.2. Comparisons on ImageCLEF-DA

Comparisons with existing methods on ImageCLEF-DA
[1] using ResNet-50 [7] as the base network are reported in
Table B, where results of existing methods are quoted from
their respective papers or the work of [13, 16]. To com-
pare our proposed SRDC with the state-of-the-art method
CAN [8] on ImageCLEF-DA, we report results of CAN ob-
tained by running the official code (i.e. available at the web-
site of https://github.com/kgl-prml/Contrastive-Adaptation-
Network-for-Unsupervised-Domain-Adaptation). We can
see that SRDC exceeds all compared methods including
CAN on all transfer tasks by a large margin, confirming the
efficacy of SRDC.



Method A→W D→W W→ D A→ D D→ A W→ A Avg
Source Model [7] 77.8±0.2 96.9±0.1 99.3±0.1 82.1±0.2 64.5±0.2 66.1±0.2 81.1
RTN [14] 84.5±0.2 96.8±0.1 99.4±0.1 77.5±0.3 66.2±0.2 64.8±0.3 81.6
DAN [12] 81.3±0.3 97.2±0.0 99.8±0.0 83.1±0.2 66.3±0.0 66.3±0.1 82.3
DANN [6] 81.7±0.2 98.0±0.2 99.8±0.0 83.9±0.7 66.4±0.2 66.0±0.3 82.6
ADDA [24] 86.2±0.5 96.2±0.3 98.4±0.3 77.8±0.3 69.5±0.4 68.9±0.5 82.9
JAN-A [15] 86.0±0.4 96.7±0.3 99.7±0.1 85.1±0.4 69.2±0.4 70.7±0.5 84.6
MADA [16] 90.0±0.1 97.4±0.1 99.6±0.1 87.8±0.2 70.3±0.3 66.4±0.3 85.2
VADA [22] 86.5±0.5 98.2±0.4 99.7±0.2 86.7±0.4 70.1±0.4 70.5±0.4 85.4
SimNet [17] 88.6±0.5 98.2±0.2 99.7±0.2 85.3±0.3 73.4±0.8 71.8±0.6 86.2
GTA [21] 89.5±0.5 97.9±0.3 99.8±0.4 87.7±0.5 72.8±0.3 71.4±0.4 86.5
MSTN [26] 91.3 98.9 100.0 90.4 72.7 65.6 86.5
MCD [20] 88.6±0.2 98.5±0.1 100.0±0.0 92.2±0.2 69.5±0.1 69.7±0.3 86.5
SAFN+ENT [27] 90.1±0.8 98.6±0.2 99.8±0.0 90.7±0.5 73.0±0.2 70.2±0.3 87.1
DAAA [9] 86.8±0.2 99.3±0.1 100.0±0.0 88.8±0.4 74.3±0.2 73.9±0.2 87.2
iCAN [28] 92.5 98.8 100.0 90.1 72.1 69.9 87.2
rRevGrad+CAT [4] 94.4±0.1 98.0±0.2 100.0±0.0 90.8±1.8 72.2±0.6 70.2±0.1 87.6
CDAN+E [13] 94.1±0.1 98.6±0.1 100.0±0.0 92.9±0.2 71.0±0.3 69.3±0.3 87.7
MSTN+DSBN [2] 92.7 99.0 100.0 92.2 71.7 74.4 88.3
TADA [25] 94.3±0.3 98.7±0.1 99.8±0.2 91.6±0.3 72.9±0.2 73.0±0.3 88.4
TAT [11] 92.5±0.3 99.3±0.1 100.0±0.0 93.2±0.2 73.1±0.3 72.1±0.3 88.4
SymNets [30] 90.8±0.1 98.8±0.3 100.0±0.0 93.9±0.5 74.6±0.6 72.5±0.5 88.4
BSP+CDAN [3] 93.3±0.2 98.2±0.2 100.0±0.0 93.0±0.2 73.6±0.3 72.6±0.3 88.5
MDD [29] 94.5±0.3 98.4±0.1 100.0±0.0 93.5±0.2 74.6±0.3 72.2±0.1 88.9
DADA [23] 92.3±0.1 99.2±0.1 100.0±0.0 93.9±0.2 74.4±0.1 74.2±0.1 89.0
CADA-P [10] 97.0±0.2 99.3±0.1 100.0±0.0 95.6±0.1 71.5±0.2 73.1±0.3 89.5
CAN [8] 94.5±0.3 99.1±0.2 99.8±0.2 95.0±0.3 78.0±0.3 77.0±0.3 90.6
SRDC 95.7±0.2 99.2±0.1 100.0±0.0 95.8±0.2 76.7±0.3 77.1±0.1 90.8

Table A. Results (%) on Office-31 (ResNet-50).

Methods I→ P P→ I I→ C C→ I C→ P P→ C Avg
Source Model [7] 74.8±0.3 83.9±0.1 91.5±0.3 78.0±0.2 65.5±0.3 91.2±0.3 80.7
DAN [12] 74.5±0.4 82.2±0.2 92.8±0.2 86.3±0.4 69.2±0.4 89.8±0.4 82.5
RTN [14] 75.6±0.3 86.8±0.1 95.3±0.1 86.9±0.3 72.7±0.3 92.2±0.4 84.9
DANN [6] 75.0±0.6 86.0±0.3 96.2±0.4 87.0±0.5 74.3±0.5 91.5±0.6 85.0
MADA [16] 75.0±0.3 87.9±0.2 96.0±0.3 88.8±0.3 75.2±0.2 92.2±0.3 85.8
JAN [15] 76.8±0.4 88.0±0.2 94.7±0.2 89.5±0.3 74.2±0.3 91.7±0.3 85.8
rRevGrad+CAT [4] 77.2±0.2 91.0±0.3 95.5±0.3 91.3±0.3 75.3±0.6 93.6±0.5 87.3
iCAN [28] 79.5 89.7 94.7 89.9 78.5 92.0 87.4
CDAN+E [13] 77.7±0.3 90.7±0.2 97.7±0.3 91.3±0.3 74.2±0.2 94.3±0.3 87.7
CAN [8] 77.2±0.6 90.3±0.5 96.0±0.2 90.9±0.3 78.0±0.6 95.6±0.6 88.0
CADA-P [10] 78.0 90.5 96.7 92.0 77.2 95.5 88.3
TAT [11] 78.8±0.2 92.0±0.2 97.5±0.3 92.0±0.3 78.2±0.4 94.7±0.4 88.9
SAFN+ENT [27] 79.3±0.1 93.3±0.4 96.3±0.4 91.7±0.0 77.6±0.1 95.3±0.1 88.9
SymNets [30] 80.2±0.3 93.6±0.2 97.0±0.3 93.4±0.3 78.7±0.3 96.4±0.1 89.9
SRDC 80.8±0.3 94.7±0.2 97.8±0.2 94.1±0.2 80.0±0.3 97.7±0.1 90.9

Table B. Results (%) on ImageCLEF-DA (ResNet-50). Note that results of CAN are obtained by running the official code.



Methods Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg
Source Model [7] 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DAN [12] 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3
DANN [6] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
JAN [15] 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3
SE [5] 48.8 61.8 72.8 54.1 63.2 65.1 50.6 49.2 72.3 66.1 55.9 78.7 61.5
DWT-MEC [18] 50.3 72.1 77.0 59.6 69.3 70.2 58.3 48.1 77.3 69.3 53.6 82.0 65.6
CDAN+E [13] 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
TAT [11] 51.6 69.5 75.4 59.4 69.5 68.6 59.5 50.5 76.8 70.9 56.6 81.6 65.8
BSP+CDAN [3] 52.0 68.6 76.1 58.0 70.3 70.2 58.6 50.2 77.6 72.2 59.3 81.9 66.3
SAFN [27] 52.0 71.7 76.3 64.2 69.9 71.9 63.7 51.4 77.1 70.9 57.1 81.5 67.3
TADA [25] 53.1 72.3 77.2 59.1 71.2 72.1 59.7 53.1 78.4 72.4 60.0 82.9 67.6
SymNets [30] 47.7 72.9 78.5 64.2 71.3 74.2 64.2 48.8 79.5 74.5 52.6 82.7 67.6
MDD [29] 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1
CAN [8] 58.5 75.3 75.1 61.7 74.5 70.1 61.3 54.6 75.9 72.4 58.3 82.4 68.3
CADA-P [10] 56.9 76.4 80.7 61.3 75.2 75.2 63.2 54.5 80.7 73.9 61.5 84.1 70.2
SRDC 52.3 76.3 81.0 69.5 76.2 78.0 68.7 53.8 81.7 76.3 57.1 85.0 71.3

Table C. Results (%) on Office-Home (ResNet-50). Note that results of CAN are obtained by running the official code.

B.3. Comparisons on Office-Home

Comparisons with existing methods on Office-Home us-
ing ResNet-50 [7] as the base network are reported in Ta-
ble C, where results of existing methods are quoted from
their respective papers or the works of [13, 18]. To com-
pare our proposed SRDC with the state-of-the-art method
CAN [8] on Office-Home, we report results of CAN ob-
tained by running the official code (i.e. available at the web-
site of https://github.com/kgl-prml/Contrastive-Adaptation-
Network-for-Unsupervised-Domain-Adaptation). We can
observe that SRDC achieves much better results than all
compared methods including CAN on almost all transfer
tasks, affirming the usefulness of SRDC.
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