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Computing Valid p-values for Image Segmentation
by Selective Inference

A Specific examples that any test statistic can
be used in our framework under certain con-
ditions

The basic assumption of ”large object-background mean intensity difference”
equals "reliable segmentation mask” may be not valid for some segmentation
tasks. For some segmentation tasks, the object and background may have sim-
ilar or even almost identical intensities. However, any test statistic can be used
in our framework if it is represented as a linear combination of pixel intensities,
i.e., test statistics after certain filterbank-based representations such as Fourier,
Wavelet, Gabor transforms can be also fit into our framework.

For example, when convolving a certain 3 x 3 linear filter that components
are represented by vec(F) := [¢1,...,¢9]T, (e.g., a first-order differential filter
of the y-axis direction F} is represented by vec(Fy) := [0,0,0,—1,1,0,0,0,0] "),

the image feature after conversion x’ is represented by the following.

Ty =P1Ti—p—1 + PoTiwy + P3Ti— i1 + Paio1 + P55

+ G6Tit1 + PTTitw—1 + PTitw + P9Titw+1

where, w is the width of the image. We can use this «’ instead of . However,
note that selection event corresponding to x also changed to x’. Figure 1 shows
an example that statistical tests are performed using the test statistic after
filter transformation in our framework. By performing the filtering process, two
regions can be detected even if there are no differences in average intensities in
the original image. Furthermore, it can be observed that the p-values obtained

with the proposed method are smaller than o = 0.05.



a) Original image b) Edge extraction

) Blurred d) Segmentation result

Figure 1: An example of performing a statistical test using feature values after
filter operation. (a) There are two regions with different textures, but there
is no difference in the average intensity of the two areas. (b) The result of
applying a first-order differential filter of the y-axis direction to a. (c) The
result of applying 5 x 5 mean filter to b. (d) The result of applying TH-based

segmentation. As a result, selective-p = 0.00 was obtained.

B Proof of Theorem 1

To formally define a valid p-value, the difference between random variables
and corresponding observations must be clarified. In the rest of this section,

for a random variable a, a°"

represents the corresponding observation. For
notational simplicity, let us write the test statistic as A = |§| with 6 = mep—mp;.

Then, the conditional p-value for the observed difference A°"® in Thm. 1 is



formally written as
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Since the property (2) is satisfied if and only if
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we prove the validity of the proposed p-value computation method
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Proof. The difference in the average pixel intensities between the object and

background regions is written as
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where
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Consider a decomposition® of & into two independent components z and w such
that

Snn' Tyn'
z = z(x) + w, where z(x) = (I, — _7;177 )z, and w = _7|_777 x
n'xn n'Xn
Hn the case of ¥ = I, this decomposition indicates the projection of x to m and its

orthogonal complement.
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Since w is written as w = Ay with y = 1?"—2", x is represented as
x = z(x) + Ay.

Thus, by fixing z(x) = z(x°") by conditioning, the quadratic inequality con-

ditions

a:TAja:+b;rw+cj <0,5=12,...
specify the range of the test statistic as A € F(z(x°")) with
E(z(z°"))

- r]j{A >0 (2(z°) + Ay) TAj(2(z°") + Ay) + b] (2(z°°) + Ay) + ¢; < 0}.

Under the conditions that A(z) = A(z°"), z(z) = z(z°") and sgn(f) =
sgn(0°b%), n is considered as a non-random fixed vector, and since & is normally
distributed, A = nTx € E(z(x°")) follows the truncated normal distribution

with truncation intervals E(z(x°)), i.e.,
[A]A € B(2(z™))] ~ TN(0,n" 3n, B(z(z°™))), (5)

where TN(u, 02, E) indicates the truncated normal distribution with mean ,

variance o2, and truncation intervals E. From (5),
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where Ffoz is the cumulative distribution function of the truncated normal
distribution TN(u, 02, E). This indicates property (4) and hence the validity of

the proposed p-value computation method in (3).

C GC-based segmentation event

As stated in §3.2, the entire process of a maximum flow optimization problem

can be decomposed into additions, subtractions, and comparisons of the weights
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Figure 2: Example of a quadratic spline approximation of the commonly used

weight function in (7).

assigned to the edges of the graph. Thus, if each weight is characterized by
quadratic equations and inequalities on the image x, the entire segmentation
process can be represented by a set of quadratic inequalities in the form of (6)
in the main text.

Recall that the graph contains n+ 2 nodes corresponding to n pixels and two
terminal nodes S and T'. The weight between two adjacent pixels is determined
based on the similarity of their pixel intensities and the distance between them.
Pixel similarity is usually defined based on the properties of the target image. To
provide flexible choice of the similarity function, we employ a quadratic spline
approximation, which allows one to specify the desired similarity function with
arbitrary approximation accuracy. In the experiments in §4, we used a quadratic

spline approximation of the commonly used weight function

(1, —1,)? 1
W(p,q) = €XP <_ p20_2 ! ) dist(p, q) , (p, Q) eN, (7)

as shown in Figure 2.

In the rest of this section, we demonstrate that for a case with a quadratic
spline approximation of (7), all the weights in the graph can be characterized by
quadratic functions and inequalities on . When other similarity functions are
used, if an appropriate quadratic spline approximation of the similarity function

is employed, similar results can be obtained.
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The first inequality is written as g1(x, — z4)? + h1 = &' Aj& + ¢; with
A; = gi(ep, — eq)(ep, — eg),c; = hyi. The second quadratic function is
written as ga(z, — 2, — 1)+ ho =2 Ajz + b;»'—:c +c¢; with A; = ga(e, —
eg)(ep—eq),bj = —2g2(eg—e,), c; = ga+ho. The third quadratic function
is written as ga(z, —2q —1)? 4+ hy = & Aje+b] +c; with A; = go(e, —
eq)(ep, —eq),b; = —2g2(e, — €q), ¢j = g2 + ho. The quadratic inequalities
in the condition part are written as (z, — 74)? < 0? & 2" A;z < 0 and
(zp—2g)? > 0% & xT Ajw > 0 with A; = (e, —eg)(e, —e) T — 25 (I —
n‘lepe;). The linear inequalities in the condition part are written as
xpquﬁb;wSOandxp>xq(:>b;'—w>0withbj:ep—eq.

e p==Sqge P\ (0*UB*)
(x4 — mi%)2
20§b

W(s,q) = )\log(27m§b) + 9)

Noting that m?{ is a linear function of x and assuming that agb is known or
independently estimated as before, the weight in (9) is written as a:;-rAja:—i—
c; with A; = T%b (ep — eose /|O%])(ep — eose /|07, ¢ = log(2m02,).

e p=S,qe€0*

W(S,q) = 1 4+ max Z W(p,r)- (10)
peP ri(p,r)EN

Let k, = Zr:(p,r)e/\/ Wy, for p € P. Since k), is the sum of the weights
characterized by quadratic functions and inequalities, as in (8), k), is also
characterized by quadratic functions and inequalities. Noting that kp.x =
maxpep kp is characterized by a set of inequalities kyax > k for any k €
P\ kmax, the weight in (10), i.e., kmax, is also characterized by quadratic

functions and inequalities.
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As done for (9), the weight in (12) can be written as m;rAjm + ¢; with

A= ﬁ(ep —ep=/|B*|)(e, — eps/|1B*|) T, c; = log(Zwagg).
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As done for (10), the weight in (13) can be characterized by quadratic

functions and inequalities.
peB* q=T

W(p,T) = 0. (14)



