
Supplementary Materials for CVPR2020 accepted

paper:

Computing Valid p-values for Image Segmentation

by Selective Inference

A Specific examples that any test statistic can

be used in our framework under certain con-

ditions

The basic assumption of ”large object-background mean intensity difference”

equals ”reliable segmentation mask” may be not valid for some segmentation

tasks. For some segmentation tasks, the object and background may have sim-

ilar or even almost identical intensities. However, any test statistic can be used

in our framework if it is represented as a linear combination of pixel intensities,

i.e., test statistics after certain filterbank-based representations such as Fourier,

Wavelet, Gabor transforms can be also fit into our framework.

For example, when convolving a certain 3 × 3 linear filter that components

are represented by vec(F ) := [ϕ1, . . . , ϕ9]
⊤, (e.g., a first-order differential filter

of the y-axis direction F1 is represented by vec(F1) := [0, 0, 0,−1, 1, 0, 0, 0, 0]⊤),

the image feature after conversion x′ is represented by the following.

x′
i =ϕ1xi−w−1 + ϕ2xi−w + ϕ3xi−w+1 + ϕ4xi−1 + ϕ5xi

+ ϕ6xi+1 + ϕ7xi+w−1 + ϕ8xi+w + ϕ9xi+w+1

where, w is the width of the image. We can use this x′ instead of x. However,

note that selection event corresponding to x also changed to x′. Figure 1 shows

an example that statistical tests are performed using the test statistic after

filter transformation in our framework. By performing the filtering process, two

regions can be detected even if there are no differences in average intensities in

the original image. Furthermore, it can be observed that the p-values obtained

with the proposed method are smaller than α = 0.05.



(a) Original image (b) Edge extraction

(c) Blurred (d) Segmentation result

Figure 1: An example of performing a statistical test using feature values after

filter operation. (a) There are two regions with different textures, but there

is no difference in the average intensity of the two areas. (b) The result of

applying a first-order differential filter of the y-axis direction to a. (c) The

result of applying 5 × 5 mean filter to b. (d) The result of applying TH-based

segmentation. As a result, selective-p = 0.00 was obtained.

B Proof of Theorem 1

To formally define a valid p-value, the difference between random variables

and corresponding observations must be clarified. In the rest of this section,

for a random variable a, aobs represents the corresponding observation. For

notational simplicity, let us write the test statistic as ∆ = |δ| with δ = mob−mbj.

Then, the conditional p-value for the observed difference ∆obs in Thm. 1 is



formally written as

p(∆obs) = PH0

∆ ≥ ∆obs

∣∣∣∣∣
A(x) = A(xobs)

z(x) = z(xobs)

sgn(δ) = sgn(δobs)

 . (1)

By definition, the p-value function p(·) in (1) should satisfy

PH0

p(∆obs) ≤ α

∣∣∣∣∣
A(x) = A(xobs)

z(x) = z(xobs)

sgn(δ) = sgn(δobs)

 = α ∀α ∈ [0, 1]. (2)

Since the property (2) is satisfied if and only ifp(∆)

∣∣∣∣∣
A(x) = A(xobs)

z(x) = z(xobs)

sgn(δ) = sgn(δobs)

 ∼ Unif[0, 1],

we prove the validity of the proposed p-value computation method

p(∆obs) = 1− F
E(z(xobs))

0,η⊤Ση
(∆obs) (3)

by showing that1− F
E(z(xobs))

0,η⊤Ση
(∆)

∣∣∣∣∣
A(x) = A(xobs)

z(x) = z(xobs)

sgn(δ) = sgn(δobs)

 ∼ Unif[0, 1] (4)

in the following proof.

Proof. The difference in the average pixel intensities between the object and

background regions is written as

∆ = |δ| = |mob −mbg| =
∣∣∣ 1

|O|
∑
p∈O

xp −
1

|B|
∑
p∈B

xp

∣∣∣ = η⊤x

where

η = sgn(δ)

(
1

|O|
eO − 1

|B|
eB

)
Consider a decomposition1 of x into two independent components z and w such

that

x = z(x) +w, where z(x) = (In − Σηη⊤

η⊤Ση
)x, and w =

Σηη⊤

η⊤Ση
x.

1In the case of Σ = In, this decomposition indicates the projection of x to η and its

orthogonal complement.



Since w is written as w = ∆y with y = Ση⊤

η⊤Ση
, x is represented as

x = z(x) + ∆y.

Thus, by fixing z(x) = z(xobs) by conditioning, the quadratic inequality con-

ditions

x⊤Ajx+ b⊤j x+ cj ≤ 0, j = 1, 2, . . .

specify the range of the test statistic as ∆ ∈ E(z(xobs)) with

E(z(xobs))

= ∩
j
{∆ ≥ 0 | (z(xobs) + ∆y)⊤Aj(z(x

obs) + ∆y) + b⊤j (z(x
obs) + ∆y) + cj ≤ 0}.

Under the conditions that A(x) = A(xobs), z(x) = z(xobs) and sgn(δ) =

sgn(δobs), η is considered as a non-random fixed vector, and since x is normally

distributed, ∆ = η⊤x ∈ E(z(xobs)) follows the truncated normal distribution

with truncation intervals E(z(xobs)), i.e.,[
∆ | ∆ ∈ E(z(xobs))

]
∼ TN(0,η⊤Ση, E(z(xobs))), (5)

where TN(µ, σ2, E) indicates the truncated normal distribution with mean µ,

variance σ2, and truncation intervals E. From (5),∆ ∣∣∣∣∣
A(x) = A(xobs)

z(x) = z(xobs)

sgn(δ) = sgn(δobs)

 ∼ TN(0,η⊤Ση, E(z(xobs))).

This means thatFE(z(xobs))

0,η⊤Ση
(∆)

∣∣∣∣∣
A(x) = A(xobs)

z(x) = z(xobs)

sgn(δ) = sgn(δobs)

 ∼ Unif[0, 1], (6)

where FE
µ,σ2 is the cumulative distribution function of the truncated normal

distribution TN(µ, σ2, E). This indicates property (4) and hence the validity of

the proposed p-value computation method in (3).

C GC-based segmentation event

As stated in §3.2, the entire process of a maximum flow optimization problem

can be decomposed into additions, subtractions, and comparisons of the weights
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Figure 2: Example of a quadratic spline approximation of the commonly used

weight function in (7).

assigned to the edges of the graph. Thus, if each weight is characterized by

quadratic equations and inequalities on the image x, the entire segmentation

process can be represented by a set of quadratic inequalities in the form of (6)

in the main text.

Recall that the graph contains n+2 nodes corresponding to n pixels and two

terminal nodes S and T . The weight between two adjacent pixels is determined

based on the similarity of their pixel intensities and the distance between them.

Pixel similarity is usually defined based on the properties of the target image. To

provide flexible choice of the similarity function, we employ a quadratic spline

approximation, which allows one to specify the desired similarity function with

arbitrary approximation accuracy. In the experiments in §4, we used a quadratic

spline approximation of the commonly used weight function

w(p,q) = exp

(
− (xp − xq)

2

2σ2

)
1

dist(p, q)
, (p, q) ∈ N , (7)

as shown in Figure 2.

In the rest of this section, we demonstrate that for a case with a quadratic

spline approximation of (7), all the weights in the graph can be characterized by

quadratic functions and inequalities on x. When other similarity functions are

used, if an appropriate quadratic spline approximation of the similarity function

is employed, similar results can be obtained.



� (p, q) ∈ N

w(p,q) =


g1(xp − xq)

2 + h1, if (xp − xq)
2 ≤ σ2,

g2(xq − xp − 1)2 + h2, if (xp − xq)
2 > σ2, xp ≤ xq,

g2(xp − xq − 1)2 + h2, if (xp − xq)
2 > σ2, xp > xq,

(8)

where

g1 =
exp(− 1

2 )− 1

σ2dist(p, q)
, h1 =

1

dist(p, q)
,

g2 =
exp(− 1

2 )− exp(− 1
2σ2 )

(σ − 1)2dist(p, q)
, h2 = exp

(
− 1

2σ2

)
1

dist(p, q)
.

The first inequality is written as g1(xp − xq)
2 + h1 = x⊤Ajx + cj with

Aj = g1(ep − eq)(ep − eq), cj = h1. The second quadratic function is

written as g2(xq − xp − 1)2 + h2 = x⊤Ajx+ b⊤j x+ cj with Aj = g2(ep −
eq)(ep−eq), bj = −2g2(eq−ep), cj = g2+h2. The third quadratic function

is written as g2(xp−xq−1)2+h2 = x⊤Ajx+b⊤j x+ cj with Aj = g2(ep−
eq)(ep − eq), bj = −2g2(ep − eq), cj = g2 + h2. The quadratic inequalities

in the condition part are written as (xp − xq)
2 ≤ σ2 ⇔ x⊤Ajx ≤ 0 and

(xp−xq)
2 > σ2 ⇔ x⊤Ajx > 0 with Aj = (ep−eq)(ep−eq)

⊤− 1
n−1 (In−

n−1ePe
⊤
P). The linear inequalities in the condition part are written as

xp ≤ xq ⇔ b⊤j x ≤ 0 and xp > xq ⇔ b⊤j x > 0 with bj = ep − eq.

� p = S, q ∈ P \ (Ose ∪ Bse)

w(S,q) = λ log(2πσ2
ob) +

(xq −mse
ob)

2

2σ2
ob

(9)

Noting thatmse
ob is a linear function of x and assuming that σ2

ob is known or

independently estimated as before, the weight in (9) is written as x⊤
j Ajx+

cj with Aj =
λ

2σ2
ob
(ep − eOse/|Ose|)(ep − eOse/|Ose|)⊤, cj = log(2πσ2

ob).

� p = S, q ∈ Ose

w(S,q) = 1 +max
p∈P

∑
r:(p,r)∈N

w(p,r). (10)

Let kp =
∑

r:(p,r)∈N w(p,r) for p ∈ P. Since kp is the sum of the weights

characterized by quadratic functions and inequalities, as in (8), kp is also

characterized by quadratic functions and inequalities. Noting that kmax =

maxp∈P kp is characterized by a set of inequalities kmax ≥ k for any k ∈
P \ kmax, the weight in (10), i.e., kmax, is also characterized by quadratic

functions and inequalities.



� p = S, q ∈ Bse

w(S,q) = 0. (11)

� p ∈ P \ (Ose ∪ Bse), q = T

w(p,T ) = λ log(2πσ2
bg) +

(xq −mse
bg)

2

2σ2
bg

(12)

As done for (9), the weight in (12) can be written as x⊤
j Ajx + cj with

Aj =
λ

2σ2
bg
(ep − eBse/|Bse|)(ep − eBse/|Bse|)⊤, cj = log(2πσ2

bg).

� p ∈ Ose, q = T

w(p,T ) = 1 +max
q∈P

∑
r:(r,q)∈N

w(r,q). (13)

As done for (10), the weight in (13) can be characterized by quadratic

functions and inequalities.

� p ∈ Bse, q = T

w(p,T ) = 0. (14)


