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1. Experimental Details
1.1. Setups and Explanations of Neural Gas

Given an input feature vector f ∈ F ⊆ Rn, the neu-
ral gas (NG) net matches it to the node j whose centroid
mj ∈ Rn has the minimum distance d(f ,mj) to f . In our
implementation, we simply use the Euclidean distance as
the distance measure, which is written in the following L2

norm form:
d(f ,mj) = ‖f −mj‖2.

To train a NG net of N nodes on the base class data, we
first extract the feature set F (1) from D(1). We initialize
NG net by randomly selecting N feature vectors from F (1)

as the initial centroid vectors of N nodes. The number of
nodes is determined according to diversity of F (1). We en-
sure the number of NG nodes is larger than the number of
classes, so that each class has at least one node for corre-
spondence. Heuristically, we set N = 400 for all datasets.

Each node is adapted to f using Eq. (3) in the main paper.
For node ri whose rank is i, the contribution by the input
vector f is measured using the decay function e−i/α. That
is, if node ri has a large rank i � α, its distance with the
input d(f ,mri) is very large, and we neglect the adaptation
to speed up the training. For this purpose, we can set α to
a smaller value (e.g. α = 10 in our experiments.) This can
reduce the time complexity of “sorting” from O(N log2N)
to O(log2N).

The topology-preserving mechanism is achieved by the
competitive Hebbian learning, where a topological connec-
tion between node i and j is established and maintained, if
the two nodes are always simultaneously response to the in-
put (i.e., the nearest and second nearest to the input). The
“age” of the connection aij is used to record how long
the two nodes have not been activated simultaneously. If
aij > T , the connection is removed. We set T = 200 for
training on the base class data according to [8]. Noting that
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if the number of training iterations is smaller, the value of
T should be decreased to a smaller value, correspondingly.

1.2. The Structure of Baseline CNNs

The QuickNet model used in the experiments is origi-
nally defined in the Caffe package [3]. Table 4 shows the
QuickNet structure in detail.

Table 4. The structure of QuickNet for evaluating on the CI-
FAR100 and miniImageNet dataset.

Name layer type filters filter size stride pad
conv1 conv 32 5 1 2
pool1 max pool - 3 2 0
relu1 relu - - - -
conv2 conv 32 5 1 2
relu2 relu - - - -
pool2 ave pool - 3 2 0
conv3 conv 64 5 1 2
relu3 relu - - - -
pool3 ave pool - 3 2 0
fc1 fc 64 - - -
fc2 fc 100 - - -

1.3. Comparative Results

Tables 5-8 report the test accuracy of all methods at dif-
ferent sessions. We run each method for 10 times and report
the mean and standard deviation of the accuracy. The four
tables correspond to the four subfigures of Figure 4 in the
main paper.

Figure 6 compares the confusion matrix of the classi-
fication results at the last session, produced by Ft-CNN,
EEIL* [1], NCM* [2] and our TOPIC. The naı̈ve finetun-
ing approach tends to misclassify all past classes (i.e., 0-94)
to the newly learned classes (i.e., 95-99), indicating catas-
trophic forgetting. EEIL* and NCM* can alleviate forget-
ting to some extent, while still tend to misclassify old class
test samples as new classes due to overfitting. Our method,



Figure 6. Comparison of the confusion matrices produced by (a) Ft-CNN, (b) EEIL*, (c) NCM*, and (d) our TOPIC on miniImageNet
with ResNet18.

named “TOPIC”, produces a much better confusion matrix,
where the activations are mainly distributed at the diagonal
line, indicating higher recognition performance over all en-
counter class. It demonstrate the effectiveness of solving
FSCIL by avoiding both “forgetting old” and “overfitting
new”.

1.4. Acquisition-Memory Curve

Current researches typically use the “accuracy” metric to
measure the performance of the models [4, 7]. To get a bet-
ter trade-off between the test accuracy of the old and new
classes, it is natural to tune the hyper-parameters or use
training tricks, such as early stopping and lower learning
rate [6, 5]. Therefore, simply reporting test accuracy may
not fully demonstrate the models’ effectiveness. For more
comprehensive measurement, we develop the acquisition-
memory (AM) curve, which measures the models’ abilities
of both remembering old class knowledge (memory) and ac-
quiring new class knowledge (acquisition). First, we record
the test accuracy of the intermediate models (i.e. the snap-
shots during training) on both old and new classes. Then we
treat the accuracy of the old and new classes as the vertical
and horizontal axes, and draw a curve using the records. We
can further compute the F-score to determine the optimal
trade-off point to get the best accuracy.

We compute AM curves at each training session for all
methods. Figure 7 shows the AM curves computed with
ResNet18 on miniImageNet. The horizontal “Acquisition
Acc.” and vertical “Memory Acc.” axes stand for the test
accuracy on new and old classes, respectively. From the
AM curves, we can observed an amplified differences of
the curves with the learning proceeds. We can observe a
sharp drop of the “Ft-CNN” curve once finetuning on new
class data, indicating catastrophic forgetting occurs. Other
methods’ curves fall much slower, thanks to the techniques
for mitigating forgetting. After several training sessions, the
differences of the curves are amplified, due to the cumula-
tive effect of forgetting. Compared with other methods, our
TOPIC (“AL-MML” setting) has the best “Memory Acc.”

after learning long sequence of sessions, indicating stronger
ability of mitigating forgetting when learning new.

We can further find the trade-off point with considerable
performance on both old and new classes, and use the cor-
responding model (snapshot) for learning subsequent ses-
sions. We compute the Fβ-score for each points on AM
curve, and pick the one with the maximum score as the
trade-off point:

Fβ = (1 + β2)
M ·A

β2M +A
.

We can set β to a smaller value to remember more knowl-
edge of old classes, or a larger value for enhancing the learn-
ing of new classes. In our comparison experiments, we set
β = 0.5 when finding trade-off points for all methods.

1.5. Ablation Study

Table 10 reports the test accuracy achieved by different
loss terms at different sessions, with ResNet18 on miniIm-
ageNet dataset, which corresponds to Table 2 in the main
paper.

Tables 11 and 12 report the test accuracy of different
methods under the 5-way 5-shot and 5-way full-shot set-
ting, which correspond to the two subfigures of Figure 5 in
the main paper.

Table 13 shows detailed comparative results between NG
node and exemplar based method. For the exemplar based
method, we randomly select exemplars from old class train-
ing samples, and extract their feature vectors as the repre-
sentatives of feature space. When performing AL, we try to
fix the feature vectors of the exemplars. While for MML,
we pull the input feature vector to its nearest exemplar vec-
tor with the same label, while pulling exemplars of differ-
ent labels away from each other. From Table 13, we can
observe that the our NG based approach is more effective
when the memory for storing the centroids of old data is
small. When the memory grows larger and larger, the ran-
domly sampled exemplars become more representative of
the old class data, with a better performance closer to NG.
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Figure 7. Comparison of the acquisition-memory (AM) curves at sessions 2-9, computed by ResNet18 on miniImageNet.

Table 5. Comparison results on CIFAR100 with QuickNet.

Method
sessions

1 2 3 4 5 6 7 8 9

Ft-CNN 57.78±0.40 13.09±0.20 6.40±0.21 3.00±0.27 2.24±0.18 2.86±0.19 1.46±0.27 2.47±0.19 2.00±0.22

Joint-CNN 57.78±0.40 53.30±0.03 49.50±0.03 46.20±0.03 43.80±0.04 41.20±0.03 39.10±0.02 37.80±0.03 35.90±0.03

iCaRL* 57.78±0.40 46.31±1.33 33.79±1.40 28.59±1.01 24.98±0.91 21.33±0.79 19.07±0.73 17.05±0.80 16.25±1.06

EEIL* 57.78±0.40 41.32±1.23 35.19±1.32 29.95±0.93 25.65±0.96 23.20±0.70 22.19±0.54 20.61±0.87 18.53±1.04

NCM* 57.78±0.40 48.91±1.31 41.91±1.57 38.05±1.02 30.61±0.90 26.68±0.67 24.79±0.68 22.15±0.71 19.50±1.18

Ours-AL 57.78±0.40 49.52±1.25 44.32±1.45 39.59±1.22 33.72±1.14 30.65±0.82 27.36±0.60 25.06±0.57 23.12±1.25

Ours-AL-MML 57.58±0.40 49.49±1.10 44.12±1.37 39.82±0.85 35.07±0.93 31.42±0.61 27.82±0.41 25.47±0.65 24.17±1.17

Table 6. Comparison results on CIFAR100 with ResNet18.

Method
sessions

1 2 3 4 5 6 7 8 9

Ft-CNN 64.10±0.40 36.91±0.20 15.37±0.38 9.80±0.25 6.67±0.13 3.80±0.19 3.70±0.17 3.14±0.23 2.65±0.11

Joint-CNN 64.10±0.40 59.30±0.27 54.90±0.08 51.20±0.03 48.10±0.02 45.80±0.03 42.80±0.02 40.90±0.02 38.90±0.03

iCaRL* 64.10±0.40 53.28±0.57 41.69±1.38 34.13±0.91 27.93±0.79 25.06±0.50 20.41±0.85 15.48±0.95 13.73±0.85

EEIL* 64.10±0.40 53.11±0.51 43.71±1.20 35.15±0.81 28.96±0.83 24.98±0.59 21.01±0.59 17.26±0.80 15.85±0.64

NCM* 64.10±0.40 53.05±0.55 43.96±1.56 36.97±0.83 31.61±0.60 26.73±0.65 21.23±0.53 16.78±1.00 13.54±0.68

Ours-AL 64.10±0.40 56.03±0.61 47.89±1.34 42.99±1.03 38.02±0.62 34.60±0.68 31.67±0.56 28.35±0.61 25.86±0.91

Ours-AL-MML 64.10±0.40 55.88±0.42 47.07±1.18 45.16±0.82 40.11±0.79 36.38±0.50 33.96±0.69 31.55±0.54 29.37±0.80

1.6. Hyper-parameter Setting

In the main paper, we set hyper-parameters λ1 = 0.5,
λ2 = 0.002 and γ = 1 for balancing the strength of dif-
ferent loss terms. These hyper-parameters are tuned us-
ing the grid search technique. Concretely, at the initial ex-

periments, we construct a temporary validation set by ran-
domly selecting 100 samples from the 500 training sam-
ples for each base class, and select 5 training samples
for each new class. We train the networks with differ-
ent settings of these hyper-parameters. For grid search,



Table 7. Comparison results on miniImageNet with QuickNet.

Method
sessions

1 2 3 4 5 6 7 8 9

Ft-CNN 50.71±0.30 11.38±0.22 2.27±0.21 2.56±0.23 1.57±0.15 2.12±0.16 2.24±0.21 2.67±0.16 1.89±0.17

Joint-CNN 50.71±0.30 46.80±0.03 43.50±0.03 40.60±0.02 38.00±0.03 35.80±0.03 33.80±0.04 32.00±0.03 30.40±0.03

iCaRL* 50.71±0.30 37.55±1.26 31.65±1.23 26.49±1.15 23.33±1.26 20.75±1.15 17.08±1.07 14.69±0.93 11.05±1.12

EEIL* 50.71±0.30 39.20±1.22 33.55±1.17 29.84±0.93 26.47±1.02 22.41±0.87 18.79±0.98 16.74±0.94 13.59±1.02

NCM* 50.71±0.30 36.49±1.13 30.44±1.36 25.40±1.17 22.08±1.11 19.68±0.92 15.95±0.97 13.09±1.02 10.84±1.14

Ours-AL 50.71±0.30 37.49±1.24 32.32±1.54 28.02±0.93 24.90±0.86 22.63±0.69 19.75±0.85 17.75±0.71 14.50±1.13

Ours-AL-MML 50.71±0.30 38.55±1.03 34.35±1.09 30.66±0.83 27.81±0.85 24.94±0.60 22.22±0.68 19.97±0.85 18.36±1.03

Table 8. Comparison results on miniImageNet with ResNet18.

Method
sessions

1 2 3 4 5 6 7 8 9

Ft-CNN 61.31±0.30 27.22±0.26 16.37±0.37 6.08±0.22 2.54±0.24 1.56±0.12 1.93±0.17 2.60±0.25 1.40±0.13

Joint-CNN 61.31±0.30 56.60±0.16 52.60±0.05 49.00±0.03 46.00±0.03 43.30±0.04 40.90±0.03 38.70±0.02 36.80±0.03

iCaRL* 61.31±0.30 46.32±0.85 42.94±1.57 37.63±1.44 30.49±1.36 24.00±1.53 20.89±1.66 18.80±1.69 17.21±1.49

EEIL* 61.31±0.30 46.58±0.86 44.00±1.53 37.29±1.35 33.14±1.20 27.12±1.47 24.10±1.54 21.57±1.75 19.58±1.26

NCM* 61.31±0.30 47.80±0.77 39.31±1.58 31.91±1.37 25.68±1.28 21.35±1.43 18.67±1.50 17.24±1.52 14.17±1.37

Ours-AL 61.31±0.30 48.58±0.64 43.77±1.15 37.19±1.12 32.38±0.90 29.67±1.36 26.44±1.38 25.18±1.34 21.80±1.14

Ours-AL-MML 61.31±0.30 50.09±0.70 45.17±1.04 41.16±1.02 37.48±0.83 35.52±1.17 32.19±1.10 29.46±1.13 24.42±0.96

Table 9. Comparison results on CUB200 with ResNet18. Nothing that the comparative methods with their original learning rate settings
have much worse test accuracy on CUB200. We carefully tune their learning rates and greatly boost their original accuracy. In the table
below, we use * to denote the settings with the improved accuracy.

Method
sessions

1 2 3 4 5 6 7 8 9 10 11

Ft-CNN 68.68±0.90 43.70±0.83 25.05±0.94 17.72±0.91 18.08±1.11 16.95±1.19 15.10±0.99 10.60±0.87 8.93±0.90 8.93±1.15 8.47±0.89

Ft-CNN* 68.68±0.90 44.81±0.94 32.26±0.96 25.83±0.84 25.62±0.93 25.22±1.13 20.84±1.05 16.77±1.01 18.82±0.96 18.25±0.93 17.18±0.95

Joint-CNN 68.68±0.90 62.43±0.83 57.23±0.94 52.80±0.99 49.50±1.04 46.10±1.02 42.80±0.96 40.10±0.95 38.70±0.92 37.10±1.10 35.60±0.85

iCaRL 68.68±0.90 60.50±0.94 46.19±0.89 31.87±0.83 29.07±0.92 21.86±0.94 21.22±0.97 19.15±0.96 16.50±1.07 14.46±1.12 14.14±1.06

iCaRL* 68.68±0.90 52.65±0.93 48.61±0.91 44.16±0.89 36.62±0.93 29.52±0.97 27.83±0.86 26.26±0.88 24.01±0.85 23.89±0.92 21.16±1.00

EEIL 68.68±0.90 57.64±0.98 42.91±0.90 28.16±0.92 27.05±0.94 25.52±0.98 25.08±1.06 22.06±1.02 19.93±0.89 19.74±0.98 19.61±1.10

EEIL* 68.68±0.90 53.63±1.09 47.91±0.96 44.20±0.98 36.30±0.89 27.46±0.97 25.93±0.94 24.70±1.04 23.95±1.03 24.13±0.89 22.11±0.91

NCM 68.68±0.90 62.55±0.89 50.33±0.85 45.07±0.96 38.25±0.87 32.58±0.90 28.71±0.98 26.28±0.89 23.80±0.96 19.91±1.09 17.82±0.93

NCM* 68.68±0.90 57.12±0.93 44.21±0.91 28.78±0.94 26.71±0.95 25.66±0.98 24.62±0.89 21.52±0.88 20.12±0.94 20.06±0.96 19.87±1.05

Ours-AL 68.68±0.90 61.01±0.92 55.35±0.94 50.01±0.89 42.42±0.92 39.07±0.91 35.47±0.90 32.87±0.88 30.04±0.93 25.91±0.91 24.85±0.87
Ours-AL-MML 68.68±0.90 62.49±0.91 54.81±0.92 49.99±0.87 45.25±0.85 41.40±0.88 38.35±0.96 35.36±0.87 32.22±0.90 28.31±0.92 26.28±0.91

we first try different hyper-parameters in a wide range
{1e−4, 0.001, 0.01, 0.1, 1, 10} to determine their scales.
Then we search these hyper-parameters in a smaller range
(e.g. [0.1, 1] for λ1.) We observed that the validation ac-
curacy has very small fluctuations (less than 0.5%) when
changing the hyper-parameters in a smaller range. Thus,
we set the hyper-parameters to those values with reasonable
validation accuracy.
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