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1. Two-step denoising

FastDVDnet features a two-step cascaded architecture.
The motivation behind this is to effectively employ the in-
formation existent in the temporal neighbors, and to enforce
the temporal correlation of the remaining noise in output
frames. To prove that the two-step denoising is a necessary
feature, we conducted the following experiment: we mod-
ified a Denoising Block of FastDVDnet (see the associated
paper) to take five frames as inputs instead of three, which
we will refer to as Den_Block_Sinputs. In this way, the same
amount of temporal neighboring frames are considered and
the same information as in FastDVDnet is processed by this
new denoiser. A diagram of the architecture of this model
is shown in Fig. 1. We then trained this new model and
compared the results of denoising of sequences against the
results of FastDVDnet.

Table 1 displays the PSNRs on four 854 x 480 color
sequences for both denoisers. It can be observed that
the cascaded architecture of FastDVDnet presents a clear
advantage on Den_Block_Sinputs, with an average dif-
ference of PSNRs of 0.95dB. Additionally, results by
Den_Block Sinputs present a sharp increase on temporal
artifacts—flickering. Despite it being a multi-scale archi-
tecture, Den_Block_Sinputs cannot handle the motion of ob-
jects in the sequences as well as the two-step architecture of
FastDVDnet can. Overall, the two-step architecture shows
superior performance with respect to the one-step architec-
ture.

2. Multi-scale architecture and end-to-end
training

In order to investigate the importance of using multi-
scale denoising blocks in our architecture, we conducted the
following experiment: we modified the FastDVDnet archi-
tecture by replacing its Denoising Blocks by the denoising
blocks of DVDnet. This results in a two-step cascaded ar-
chitecture, with single-scale denoising blocks, trained end-
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Figure 1. Architecture of the Den_Block_5inputs denoiser.

Table 1. Comparison of PSNR of two denoisers on four se-
quences. Best results are shown in bold. Note: for this test in
particular, neither of these denoisers implement residual learning.

FastDVDnet Den_Block_Sinputs

o =10 hypersmooth 37.34 35.64
motorbike 34.86 34.00

rafting 36.20 34.61

snowboard 36.50 34.27

o =30 hypersmooth 32.17 31.21
motorbike 29.16 28.77

rafting 30.73 30.03

snowboard 30.59 29.67

o =50 hypersmooth 29.77 28.92
motorbike 26.51 26.19

rafting 28.45 27.88

snowboard 28.08 27.37

to-end, and with no compensation of motion in the scene.
We will call this new architecture FastDVDnet_Single. Ta-
ble 2 shows the PSNRs on four 854 x 480 color sequences
for both FastDVDnet and FastDVDnet_Single. It can be
seen that the usage of multi-scale denoising blocks im-
proves denoising results considerably. In particular, there
is an average difference of PSNRs of 0.55d B in favor of the
multi-scale architecture.



Table 2. Comparison of PSN R of a single-scale denoiser against
a multi-scale denoiser on four sequences. Best results are shown
in bold. Note: for this test in particular, neither of these denoisers
implement residual learning.

FastDVDnet FastDVDnet_Single
o =10 hypersmooth 37.34 36.61
motorbike 34.86 34.30
rafting 36.20 35.54
snowboard 36.50 35.50
o =30 hypersmooth 32.17 31.54
motorbike 29.16 28.82
rafting 30.73 30.36
snowboard 30.59 30.04
o =50 hypersmooth 29.77 29.14
motorbike 26.51 26.22
rafting 28.45 28.11
snowboard 28.08 27.56
3. Ablation studies

A number of modifications with respect to the baseline
architecture discussed in the associated paper have been
tested, namely:

e the use of Leaky ReLU [8] or ELU [4] instead of ReLU.
In neither case significant changes in performance
were observed, with average differences in PSNR of
less than 0.05d B on all the sequences and standard de-
viation of noise considered.

e optimizing with respect to the Huber loss [6] instead
of the Ly norm. No significant change of performance
was observed. The mean difference in PSNR on all the
sequences and standard deviation of noise considered
was 0.04dB in favor of the L, norm case.

e removing batch normalization layers. An drop in per-
formance of 0.18d B on average was observed for this
case.

e taking more input frames. The baseline model was
modified to take 7 and 9 input frames instead of 5.
No improvement in performance was observed in nei-
ther case. It was also observed an increased difficulty
of these models, which have more parameters, to con-
verge during training with respect to the case with 5
input frames.

4. Upscaling layers

In the multi-scale denoising blocks, the upsampling in
the decoder is performed with a PixelShuffle layer [9]. This
layer repacks its input of dimension 4n.,, X h/2 X w/2 into
an output of size n.p X h xw, where ch, h, w are the number
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Figure 2. Upscaling layer.

of channels, the height, and the width, respectively. In other
words, this layer constructs all the 2 x 2 non-overlapping
patches of its output with the pixels of different channels of
the input, as shown in Fig. 2

5. Gaussian noise model

Recently, a number of algorithms have been proposed for
video and burst denoising in low-light conditions, e.g. [3,

, 7]. What is more, some of these works argue that real
noise cannot be accurately modeled with a simple Gaus-
sian model. Yet, the algorithm we propose here has been
developed for Gaussian denoising because although Gaus-
sian i.i.d. noise is not utterly realistic, it eases the compari-
son with other methods on comparable datasets—one of our
primary goals. We believe Gaussian denoising is a middle
ground where different denoising architectures can be com-
pared fairly. Some networks which are proposed to denoise
a specific low-light dataset are designed and overfitted given
the image processing pipe of said dataset. In some cases, the
comparison against other methods which have not been de-
signed for the given dataset—e.g. the current version of our
method—might not be accurate. Nonetheless, low-light de-
noising is not the main objective of our submission. Rather,
it is to show that a simple, yet carefully designed architec-
ture can outperform other more complex methods. We be-
lieve that the main challenge to denoising algorithms is the
input signal-to-noise ratio. In this regard, the presented re-
sults have similar characteristics to low-light videos.

6. Permutation invariance

The algorithm proposed for burst deblurring and denois-
ing in [ 1] features invariance to the permutation of the order-
ing of its input frames. One might be tempted to replicate
its characteristics in an architecture such as ours to benefit
from the advantages of the permutation invariance. How-
ever, the application of our algorithm is video denoising—
which is not identical to burst denoising. Actually, the order
in the input frames is a prior exploited by our algorithm to
enforce the temporal coherence in the output sequence. In
other words, permutation invariance is not necessarily de-



sirable in our case.

7. Recursive processing

As previously discussed, in practice, the processing of
our algorithm is limited to five input frames. Given this
limitation, one would wonder if the theoretic performance
bound might be lower to that of other solutions based on
recursive processing (i.e. using the output frame in time ¢
as input to the next frame in time ¢ 4+ 1). Yet, our expe-
rience with recursive filtering of videos is that it is diffi-
cult for the latter methods to be on par with methods which
employ multiple frames as input. Although, in theory, re-
cursive methods are asymptotically more powerful in terms
of denoising than multi-frame methods, in practice the per-
formance of recursive methods suffers due to temporal ar-
tifacts. Any misalignment or motion compensation artifact
which might appear in the output frame at a given time is
very likely to appear in all subsequent outputs. An inter-
esting example to illustrate this point is the comparison of
the method in [5] versus the video non-local Bayes denoiser
(VNLB [2]). The former implements a recursive version of
VNLB, which results in a lower complexity algorithm, but
with very inferior performance with respect to the latter.

References

[1] Miika Aittala and Frédo Durand. Burst image deblurring
using permutation invariant convolutional neural networks.
In European Conference on Computer Vision, pages 748—
764. Springer International Publishing, 2018. 2

[2] Pablo Arias and Jean-Michel Morel. Video denoising via
empirical bayesian estimation of space-time patches. Journal
of Mathematical Imaging and Vision, 60(1):70-93, Jan 2018.
3

[3] C. Chen, Q. Chen, M. Do, and V. Koltun. Seeing motion in
the dark. In 2019 IEEE/CVF International Conference on
Computer Vision (ICCV), pages 3184-3193, 2019. 2

[4] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochre-
iter. Fast and accurate deep network learning by exponential
linear units (elus). In 4th International Conference on Learn-
ing Representations, ICLR 2016, San Juan, Puerto Rico,
May 2-4, 2016, Conference Track Proceedings, 2016. 2

[5] T. Ehret, J. Morel, and P. Arias. Non-local kalman: A re-
cursive video denoising algorithm. In 2018 25th IEEE In-
ternational Conference on Image Processing (ICIP), pages
3204-3208, 2018. 3

[6] Ross Girshick. Fast R-CNN. In Proceedings of the IEEE
International Conference on Computer Vision, 2015. 2

[7] Samuel W. Hasinoff, Dillon Sharlet, Ryan Geiss, Andrew
Adams, Jonathan T. Barron, Florian Kainz, Jiawen Chen, and
Marc Levoy. Burst photography for high dynamic range and
low-light imaging on mobile cameras. ACM Trans. Graph.,
35(6), Nov. 2016. 2

[8] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Recti-
fier nonlinearities improve neural network acoustic models.

(9]

(10]

In in ICML Workshop on Deep Learning for Audio, Speech
and Language Processing, 2013. 2

Wenzhe Shi, Jose Caballero, Ferenc Huszar, Johannes Totz,
Andrew P. Aitken, Rob Bishop, Daniel Rueckert, and Zehan
Wang. Real-Time Single Image and Video Super-Resolution
Using an Efficient Sub-Pixel Convolutional Neural Network.
In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1874-1883. IEEE, Jun 2016. 2
Wei Wang, Xin Chen, Cheng Yang, Xiang Li, Xuemei Hu,
and Tao Yue. Enhancing low light videos by exploring high
sensitivity camera noise. pages 4110-4118, 10 2019. 2



