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Abstract

In this supplementary material, we provide more details
on the optimization algorithm, network design, and param-
eter settings in our experiments. Besides, we show more
analysis on our model and provide more ablation studies
about the proposed rain convolutional dictionary network
(RCDNet). In the end, we utilize more representative rainy
images with various rain patterns to demonstrate more ex-
perimental results for rain removal performance compar-
isons and model verification.

1. More details of optimization algorithm
In this section, we provide a detailed derivation for op-

timization algorithm in Section 3.2 of the main text. The
expression of the original optimization problem is:

min
M,B

∥∥∥∥∥O−B−
N∑
n=1

Cn⊗Mn

∥∥∥∥∥
2

F

+αg1(M)+βg2(B), (1)

whereM ∈ RH×W×N is the tensor form of Mns. α and
β are trade-off parameters. g1(·) and g2(·) represent the
regularizers to deliver the prior structures of Mn and B,
respectively.

As explained in the main text, we prefer to build a new
algorithm for solving the problem through alternately up-
dating M and B by the proximal gradient technique [1].
The details are as follows:

UpdatingM: The rain mapsM can be updated by solv-
ing:

M(s) = argmin
M

Q1

(
M,M(s−1)

)
, (2)

whereM(s−1) is the updating result obtained in the last iter-
ation, and Q1(M,M(s−1)) is a quadratic approximation of
the objective function (1) with respect toM [1], expressed
as:

Q1

(
M,M(s−1)

)
=f
(
M(s−1)

)
+

1

2η1

∥∥∥M−M(s−1)
∥∥∥2
F

+
〈
M−M(s−1),∇f

(
M(s−1)

)〉
+αg1 (M),

(3)

where f(M(s−1)) =
∥∥∥O−B(s−1)−∑N

n=1 Cn ⊗M
(s−1)
n

∥∥∥2
F

and η1 is the stepsize parameter. It is easy to prove that the
problem (2) is equivalent to:

min
M

1

2

∥∥∥M−(M(s−1)−η1∇f
(
M(s−1)

))∥∥∥2
F
+ αη1g1 (M) .

(4)
Corresponding to general regularization terms [2], the solu-
tion of Eq. (4) is:

M(s) = proxαη1
(
M(s−1)−η1∇f

(
M(s−1)

))
. (5)

Moreover, by substituting

∇f
(
M(s−1)

)
=C⊗T

(
N∑
n=1

Cn⊗M (s−1)
n +B(s−1)−O

)
, (6)

where C ∈ Rk×k×N×3 is a 4-D tensor stacked by Cns, and
⊗T denotes the transposed convolution1, we can obtain the
updating formula forM as2:

M(s) =

proxαη1

(
M(s−1)−η1C⊗T

(
N∑
n=1

Cn⊗M (s−1)
n +B(s−1)−O

))
,

(7)

where proxαη1(·) is the proximal operator dependent on the
regularization term g1(·) with respect toM.

Updating B: Similarly, the quadratic approximation of
the objective function (1) with respect to B is:

Q2

(
B,B(s−1)

)
=h

(
B(s−1)

)
+

1

2η2

∥∥∥B − B(s−1)
∥∥∥2
F

+
〈
B − B(s−1),∇h

(
B(s−1)

)〉
+ βg2 (B) ,

(8)

where h(B(s−1)) =
∥∥∥O−B(s−1)−∑N

n=1 Cn ⊗M
(s)
n

∥∥∥2
F

and η2 is the stepsize parameter. Then the equivalent op-
timization problem is:

min
B

1

2

∥∥∥B−(B(s−1)−η2∇h(B(s−1)))∥∥∥2
F
+βη2g2(B) . (9)

1For any tensor A ∈ RH×W×3, we can calculate the nth channel of
C⊗TA by

∑3
c=1 C{:,:,n,c} ⊗T A{:,:,c}.

2It can be proved that, with small enough η1 and η2, Eq. (7) and Eq.
(10) can both lead to the reduction of objective function (1) [1].
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Figure 1. Illustration of B-net with channel concatenation operator at the sth stage. The images are better observed by zooming in on screen.

With∇h
(
B(s−1)

)
=
∑N
n=1 Cn⊗M

(s)
n +B(s−1)−O, it

is easy to deduce that the final updating rule for B is2:

B(s)=

proxβη2

(
(1− η2)B(s−1)+η2

(
O−

N∑
n=1

Cn⊗M (s)
n

))
,

(10)

where proxβη2(·) is the proximal operator correlated to the
regularization term g2(·) with respect to B.

Here, Eq. (4) and Eq. (9) correspond to Eq. (5) and E-
q. (9) in the main text, respectively.

2. More details of network design
In this section, we present more details of the network

design, including the channel concatenation operator, ini-
tialization at s = 0, proxNet

θ
(s)
m
(·), and proxNet

θ
(s)
b

(·).
Channel concatenation operator. As stated in Remark

presented in Section 4.1 of the main text, the input tensor of
proxNet

θ
(s)
b

(·) is
(
(1− η2)B(s−1) + η2B̂(s)

)
which has the

same size ofH ×W × 3 as the to-be-estimated B. Evident-
ly, this is not beneficial for learning B since most of the pre-
vious updating information would be compressed due to not
sufficiently specified number of channels. To better keep
and deliver image features, we simply expand the input ten-
sor at the 3rd mode for more channels in experiments.

Specifically, we introduce an auxiliary variable Z
with the size of H ×W ×Nz , put it behind the ten-
sor

(
(1− η2)B(s−1) + η2B̂(s)

)
at the channel mode,

and then obtain a new input tensor with the size of
H ×W × (Nz + 3) as the input of proxNet

θ
(s)
b

(·). Thus
the number of input channels of proxNet

θ
(s)
b

(·) varies from
3 to (Nz + 3). Accordingly, for the output with the size
H ×W × (Nz + 3) of proxNet

θ
(s)
b

(·), we decompose it in-
to two sub-tensors based on the channel mode: one sub-
tensor corresponding to the first 3 channels is taken as the
updated background layer B(s) and the other one corre-
sponding to remaining channels is regraded as Z(s) with
the size of H ×W ×Nz . Please refer to Fig. 1 for better
understanding.

Initialize B(0) and Z(0). In our network implementa-
tion, we setM(0) = 0, and initialize B(0) and Z(0) by:

{B(0) | Z(0)} = proxNet
θ
(0)
b

(concat (O, Cz ⊗O)) , (11)

where Cz is the learnable convolutional filters with the size
of kz × kz × 3×Nz . Refer to Eq. (2) in the main text for
better understanding of the convolutional operator. Actual-
ly, this has been ready-made in current popular deep learn-
ing (DL) framework such as Tensorflow3 and PyTorch4.
The function concat(·) means the channel concatenation
operator as illustrated before. Here the operator is exe-
cuted between O and Cz ⊗ O. proxNet

θ
(0)
b

(·) is a deep
residual network (ResNet) [6] with the same structure as
proxNet

θ
(s)
b

(·) (s = 1, · · · , S), but with different parameter

as θ(0)b . Clearly, the output tensor of proxNet
θ
(0)
b

(·) is also

3https://tensorflow.google.cn/
4https://pytorch.org/docs/stable/index.html

https://tensorflow.google.cn/
https://pytorch.org/docs/stable/index.html


Table 1. Rain removal performance on Rain100L of the proposed RCDNet with different loss functions. Note that the tradeoff parameter
not mentioned in each version is 0 by default. For example, for Version 1, λs = 0 (s = 0, · · · , S − 1) and γs = 0 (s = 1, · · · , S).
Version Parameter setting Loss function PSNR SSIM

1 λS = 1 L =
∥∥B(S)−B∥∥2

F
39.90 0.9855

2
λS = 1

λs = 0.1(s 6= S)
L =

∥∥B(S)−B∥∥2
F

+
∑S−1
s=0 0.1

∥∥B(s)−B∥∥2
F

39.93 0.9857

3 λS = γS = 1 L =
∥∥B(S)−B∥∥2

F
+
∥∥∥O−B−R(S)

∥∥∥2
F

39.94 0.9860

4
λS = γS = 1
γs = 0.1(s 6= S)

L =
∥∥B(S)−B∥∥2

F
+
∥∥∥O−B−R(S)

∥∥∥2
F

+
∑S−1
s=1 0.1

∥∥∥O−B−R(s)
∥∥∥2
F

39.98 0.9860

5
λS = γS = 1

λs = γs = 0.1(s 6= S)
L =

∥∥B(S)−B∥∥2
F

+
∥∥∥O−B−R(S)

∥∥∥2
F

+
∑S−1
s=0 0.1

∥∥B(s)−B∥∥2
F

+
∑S−1
s=1 0.1

∥∥∥O−B−R(s)
∥∥∥2
F

40.00 0.9860
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Figure 2. (a) The exploited ResNet for the proximal network
proxNet

θ
(s)
m

(·). (b) The exploited ResNet for the proximal net-
work proxNet

θ
(s)
b

(·).

with the size of H ×W × (Nz + 3), and can be decom-
posed into B(0) with the size of H ×W × 3 and Z(0) with
the size of H ×W ×Nz based on the channel mode, as de-
picted above. In this manner, we keep the number of input
and output channels through proxNet

θ
(0)
b

(·) consistent, and
take the corresponding fine-tuned results of O and Cz ⊗ O
with the ResNet as B(0) and Z(0), respectively. Intuitively,
this is simple and reasonable.

Proximal Network and ResNet. As stated before,
we adopt the ResNet to build the proximal network
proxNet

θ
(s)
m
(·) and proxNet

θ
(s)
b

(·) (s = 0, 1, · · · , S). Re-
fer to Fig. 2 (a) and Fig. 2 (b) for detailed illustration of
the used ResNet for proxNet

θ
(s)
m
(·) and proxNet

θ
(s)
b

(·), re-
spectively. For simplicity, in all experiments, among all
stages, the number T of Resblocks in proxNet

θ
(s)
m
(·) and

proxNet
θ
(s)
b

(·) is with the same setting.
Here, all the parameters involved in the RCDNet can be

automatically learned from training data in an end-to-end
manner, including {θ(s)m , θ

(s)
b }Ss=1, rain kernels C, η1, and

η2, Cz , and θ(0)b .

3. More implementation details

We use PyTorch [11] to implement our network, based
on a PC equipped with an Intel (R) Core(TM) i7-8700K at
3.70GHZ and a NVIDIA GeForce GTX 1080Ti GPU. We
adopt the Adam optimizer [8] with the batch size of 16 and

the patch size of 64×64. The initial learning rate is 1×10−3
and divided by 5 every 25 epochs. The total epoch is 100.
It is worth mentioning that for all datasets in the main text,
these parameter settings are the same. This would show the
favorable robustness and generality of our method.

4. More ablation studies
In this section, we provide more ablation studies based

on Rain100L. The synthesized dataset consists of 200
rainy/clean image pairs for training and 100 pairs for test-
ing [16]. Two performance metrics are employed, including
peak-signal-to-noise ratio (PSNR) [7] and structure similar-
ity (SSIM) [14]. As the human visual system is sensitive to
the Y channel of a color image in YCbCr space, we com-
pute PSNR and SSIM based on this luminance channel.

4.1. Loss function

As stated in the main text, the objective function for
training the proposed RCDNet is expressed as:

L =

S∑
s=0

λs

∥∥∥B(s)−B∥∥∥2
F
+

S∑
s=1

γs

∥∥∥O−B−R(s)
∥∥∥2
F
, (12)

where B(s) andR(s) denote the derained result and extract-
ed rain layer at the sth stage, respectively. λs and γs are
tradeoff parameters.

Here, we choose the number N of rain maps and the
channel concatenation number Nz as 32. The size k of rain
kernels is 9, and kz = 3. Setting the number T of Resblocks
in each ResNet at every stage as 4 and the stage number S
as 17, we study the effect of loss function with different pa-
rameter settings of λs and γs on rain removal performance
of RCDNet, as depicted in Table 1. From Version 1, we
can find that even when we only adopt a single loss on the
final derained result B̂, our method can still significantly
outperform other comparison methods on Rain100L, as re-
ported in Table 5. By comparing Versions 1 and 3, we can
see that the performance can be further improved by impos-
ing supervision loss on the final extracted rain layer R(S).
Besides, intra-stage supervision for the results B(s)

(
R(s)

)
is helpful for enabling the network to be evolved to a bet-
ter direction. This can be easily concluded by comparing



Table 2. Effect of Resblocks number T , involved in the ResNet as
shown in Fig. 2, on the performance of RCDNet.

T T=1 T=2 T=3 T=4 T=5
PSNR 39.04 39.52 39.80 40.00 39.98
SSIM 0.9833 0.9848 0.9856 0.9860 0.9859

Table 3. Effect of stage number S on the performance of RCDNet.
Stage No. S=0 S=2 S=5 S=8 S=11 S=14 S=17 S=20

PSNR 35.93 38.46 39.35 39.60 39.81 39.90 40.00 39.91
SSIM 0.9689 0.9813 0.9842 0.9850 0.9855 0.9858 0.9860 0.9858

Table 4. Effect of channel concatenation number Nz on the per-
formance of RCDNet.
Nz Nz=0 Nz=2 Nz=8 Nz=14 Nz=20 Nz=26 Nz=32 Nz=38

PSNR 38.99 39.13 39.36 39.69 39.72 39.82 40.00 39.98
SSIM 0.9830 0.9836 0.9843 0.9851 0.9853 0.9856 0.9860 0.9859

Versions 1 and 2 (Versions 3 and 4). Furthermore, taking
Version 1 as a benchmark, from Versions 2, 3, and 4, we
observe that intra-stage supervision loss for rain layer plays
more important role in deraining performance than that for
background layer. This also reflects the effectiveness of M-
net. Based on the analysis aforementioned, we thus present
a Version 5 and take it as our final loss function in all sub-
sequent experiments where we directly set λS = γS = 1 to
make the outputs at the final stage play a dominant role, and
other parameters as 0.1 to help find the correct parameter at
each stage.

4.2. Network architecture

From Fig. 1, the key factors affecting our network
architecture include: Resblocks number T involved in
each ResNet, stage number S, and channel concatena-
tion number Nz . As aforementioned, proxNet

θ
(s)
m
(·) and

proxNet
θ
(s)
b

(·) have the same Resblocks number T and it
keeps the same among all stages. In the following, we eval-
uate the effect of these factors on the RCDNet.

Resblocks number T at each stage. Setting S as 17
and Nz as 32, we separately select Resblocks number T as
1, 2, 3, 4, and 5. The quantitative comparison is presented
in Table 2. It can be easily observed that more Resblocks
usually bring higher average PSNR and SSIM. However,
larger T would make gradient propagation more difficult,
explaining the fact that the performance with T = 5 is a
little inferior to the case of T = 4. Hence, we select T as 4
in the following experiments.

Stage number S. Table 3 and Fig. 3 clearly present the
effect of stage number S on the rain removal performance
of RCDNet. Here, S = 0 means that the initialization B(0)
is directly regraded as the recovery result. Taking S = 0
as a baseline, it is seen that only with 2 stages, our method
achieves significant rain removal performance, which val-
idates the essential role of the proposed M-net and B-net.
We also observe that when S = 20, its deraining perfor-
mance is slightly lower than that of S = 17 since larger
S would make gradient propagation more difficult as ex-
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Figure 3. Average PSNR and SSIM with different stage number S.

plained before. Based on such observation, we easily set S
as 17 throughout all our experiments.

Channel concatenation number Nz . By setting T as
4 and S as 17, Table 4 lists the PSNR and SSIM obtained
by our proposed algorithm with different channel concate-
nation number Nz . It is easy to see that larger channel con-
catenation number Nz is indeed helpful for passing more
effective image features and thus brings higher PSNR and
SSIM. The fact confirms the rationality of the proposed
concatenation operator in the network design. Besides, the
case Nz = 38 has a litter lower performance than the case
Nz = 32 since larger Nz with more parameters makes the
network training difficult. We thus choose Nz as 32.

5. More experimental results

In this section, we demonstrate more experimental re-
sults on the datasets adopted in the main text.

Comparison methods. The comparison method-
s include: model-based DSC [17]5, GMM [10]6,
and JCAS [5]7; deep learning (DL)-based Clear [3]8,
DDN [4]9, RESCAN [9]10, PReNet [12]11, SPANet [13]12,
JORDER E [16]13, and SIRR [15]14.

5https://sites.google.com/view/taixiangjiang/
%E9%A6%96%E9%A1%B5/state-of-the-art-methods

6http://yu-li.github.io/
7https://sites.google.com/site/shuhanggu/home
8https://xueyangfu.github.io/projects/tip2017.

html
9https://xueyangfu.github.io/projects/

cvpr2017.html
10https://github.com/XiaLiPKU/RESCAN
11https://github.com/csdwren/PReNet
12https://stevewongv.github.io/derain-project.

html
13https://github.com/flyywh/

JORDER-E-Deep-Image-Deraining-TPAMI-2019-Journal
14https://github.com/wwzjer/Semi-supervised-IRR

https://sites.google.com/view/taixiangjiang/%E9%A6%96%E9%A1%B5/state-of-the-art-methods
https://sites.google.com/view/taixiangjiang/%E9%A6%96%E9%A1%B5/state-of-the-art-methods
http://yu-li.github.io/
https://sites.google.com/site/shuhanggu/home
https://xueyangfu.github.io/projects/tip2017.html
https://xueyangfu.github.io/projects/tip2017.html
https://xueyangfu.github.io/projects/cvpr2017.html
https://xueyangfu.github.io/projects/cvpr2017.html
https://github.com/XiaLiPKU/RESCAN
https://github.com/csdwren/PReNet
https://stevewongv.github.io/derain-project.html
https://stevewongv.github.io/derain-project.html
https://github.com/flyywh/JORDER-E-Deep-Image-Deraining-TPAMI-2019-Journal
https://github.com/flyywh/JORDER-E-Deep-Image-Deraining-TPAMI-2019-Journal
https://github.com/wwzjer/Semi-supervised-IRR
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Figure 4. 1st column: input rainy image from Rain12 (upper) and groundtruth (lower). 2nd-12th column: derained results (upper) and
extracted rain layers (lower) by 11 competing methods. PSNR/SSIM are listed below the corresponding images for easy reference. The
best performed results are highlighted in bold. The images are better observed by zooming in on screen.
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Figure 5. Rain removal performance comparisons on a rainy image from Rain100H. The images are better observed by zooming in on
screen.

5.1. More results on synthetic data

Synthetic datasets. Besides Rain100L, other three
frequently-used benchmark datasets are also used, includ-
ing Rain100H [16], Rain1400 [4], and Rain12 [10]. In spe-
cific, Rain100H covers five types of rain streak directions
and contains 1800 training image pairs and 100 testing ones.
Rain1400 includes 14 kinds of different rain streak orien-
tations and magnitudes, and consists of 12600 rainy/clean
image pairs for training and 1400 ones for testing. Rain12
has only 12 pairs. Like [12], we directly apply the trained
model of Rain100L on Rain12 for evaluation.

Fig. 4 illustrates the deraining performance of all com-
peting methods on a rainy image from Rain12. As dis-
played, the proposed RCDNet has an evident advantage
over other competing methods in rain removal and back-

ground recovery. Besides, the rain layer extracted by RCD-
Net contains fewer unexpected background details than that
by other competing methods.

Fig. 5 and Fig. 6 depict the rain removal compari-
son results on the other two rainy images, selected from
Rain100H and Rain1400, respectively. From the two fig-
ures, we can easily conclude that as compared with oth-
er competing methods, our proposed RCDNet not only re-
moves more rain streaks but also preserves background de-
tails better. Even the two input rainy images have very dif-
ferent rain patterns, our method still obtains the best PSNR
and SSIM for both of them.

Table 5 reports the quantitative results of all competing
methods. It is seen that our RCDNet attains best deraining
performance among all competing methods on each dataset.
Moreover, even we only adopt the single loss as the ob-
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Figure 6. Rain removal performance comparisons on a rainy image from Rain1400. The best performed results are highlighted in bold.
The images are better observed by zooming in on screen.
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Figure 7. Rain removal performance comparisons on a real rainy image with various (long/thin/heavy) rain streaks from SPA-Data. The
images are better observed by zooming in on screen.
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Figure 8. Rain removal performance comparisons on a real rainy image with light rain streaks from SPA-Data. The images are better
observed by zooming in on screen.

jective function, that is, Version 1 in Table 1, our network
RCDNet1 still has a dominant deraining performance.

5.2. More results on real data

Real datasets. We then analyze the performance of al-
l competing methods on two real datasets: the first one
(called SPA-Data) from [13] contains 638492 rainy/clean

image pairs for training and 1000 testing ones, and the sec-
ond one (called Internet-Data) from [13, 15] includes 147
rainy images without groundtruth. Specifically, the SPA-
Data is semi-automatically generated and the Internet-Data
is collected from Internet and includes many hard samples
with complicated rain streaks.

Fig. 7 and Fig. 8 show two real rainy images with very
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Figure 9. Derained results for one sample with complicated rain type from Internet-Data. The images are better observed by zooming in
on screen.

DDN

RESCAN PReNet SPANet JORDER_E SIRR RCDNet

Input DSC GMM JCAS Clear

Figure 10. Derained results for one sample with dense long rain streaks from Internet-Data. The images are better observed by zooming in
on screen.

Table 5. PSNR and SSIM comparisons on four benchmark dataset-
s. The best and second best results on each dataset are indicated
by bold and bold italic, respectively.

Datasets Rain100L Rain100H Rain1400 Rain12
Metrics PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Input 26.90 0.8384 13.56 0.3709 25.24 0.8097 30.14 0.8555

DSC[17] 27.34 0.8494 13.77 0.3199 27.88 0.8394 30.07 0.8664
GMM[10] 29.05 0.8717 15.23 0.4498 27.78 0.8585 32.14 0.9145
JCAS[5] 28.54 0.8524 14.62 0.4510 26.20 0.8471 33.10 0.9305
Clear[3] 30.24 0.9344 15.33 0.7421 26.21 0.8951 31.24 0.9353
DDN[4] 32.38 0.9258 22.85 0.7250 28.45 0.8888 34.04 0.9330

RESCAN[9] 38.52 0.9812 29.62 0.8720 32.03 0.9314 36.43 0.9519
PReNet[12] 37.45 0.9790 30.11 0.9053 32.55 0.9459 36.66 0.9610
SPANet[13] 35.33 0.9694 25.11 0.8332 29.85 0.9148 35.85 0.9572

JORDER E[16] 38.59 0.9834 30.50 0.8967 32.00 0.9347 36.69 0.9621
SIRR[15] 32.37 0.9258 22.47 0.7164 28.44 0.8893 34.02 0.9347
RCDNet1 39.90 0.9855 30.91 0.9037 32.78 0.9446 37.63 0.9636
RCDNet 40.00 0.9860 31.28 0.9093 33.04 0.9472 37.71 0.9649

different rain patterns from SPA-Data to comprehensive-
ly evaluate the rain removal performance of all competing
methods, both visually and quantitatively. As observed, tra-
ditional model-based DSC, GMM, and JCAS leave obvious
rain streaks in the derained results. Among DL-based meth-
ods, some cannot perfectly remove all rain streaks such as
DDN, PReNet, JORDER E, and SIRR, while some blur im-
age details, including Clear and SPANet. For RESCAN, it
leaves some rain streaks as shown in Fig. 7 while adverse-
ly loses background textures as presented in Fig. 8. Our
RCDNet, however, can always achieve an evident superior
performance than other methods under different rain types.

Table 6. PSNR and SSIM comparisons on SPA-Data [13].
Methods Input DSC GMM JCAS Clear DDN RESCAN
PSNR 34.15 34.95 34.30 34.95 34.39 36.16 38.11
SSIM 0.9269 0.9416 0.9428 0.9453 0.9509 0.9463 0.9707

Methods PReNet SPANet JORDER E SIRR RCDNet1 RCDNet /
PSNR 40.16 40.24 40.78 35.31 40.99 41.47 /
SSIM 0.9816 0.9811 0.9811 0.9411 0.9816 0.9834 /

Table 6 compares the derained results on SPA-Data of all
competing methods quantitatively. It is easy to see that even
for such complex and diverse rain patterns, the proposed
RCDNet1 with the simplest loss function still significantly
outperforms other comparison methods.

Further, we select two hard samples with various rain
densities from Internet-Data (different from the rain type-
s in the main text) to evaluate the generalization ability of
all comparison methods. From Fig. 9 and Fig. 10, we can
observe that traditional model-based methods always leave
evident rain streaks. Although DL-based ones remove ob-
vious rain streaks, they still leave distinct rain marks or blur
some background details. Comparatively, the proposed R-
CDNet has a better generalization ability as it can better
preserve image textures as well as more sufficiently remove
rain streaks for these unseen complex rain types.

6. Model verification on more datasets
In this section, we provide more deraining results of R-

CDNet based on more samples with diverse rain patterns in-
volved in the datasets above (besides Rain100L in the main
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 / 
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Figure 11. (a) The first row: 5 representative rainy images with different rain densities and directions involved in Rain100H. (b) The
second row: the corresponding groundtruth. (c) The third row: The derained results of our RCDNet. PSNR/SSIM are listed below the
corresponding images for easy reference.

(a1) 23.86 / 0.7428

(a2) 34.03 / 0.9477

(b1) 30.25 / 0.8658

(b2) 37.19 / 0.9617

(c1) 29.97 / 0.8633

(c2) 37.19 / 0.9627

(d1) 30.57 / 0.8744

(d2) 37.44 / 0.9655
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(e2) 36.82 / 0.9624

(f1) 30.10 / 0.8614

(f2) 37.00 / 0.9632

(g1) 30.13 / 0.8647

(g2) 36.92 / 0.9625

(h1) 30.70 / 0.8785

(h2) 37.20 / 0.9631

(i1) 24.03 / 0.7588

(i2) 34.61 / 0.9500

(j1) 22.04 / 0.6868

(j2) 33.41 / 0.9432

(k1) 23.83 / 0.7404

(k2) 34.37 / 0.9513

(l1) 23.75 / 0.6901

(l2) 33.87 / 0.9505

(m1) 23.65 / 0.7342

(m2) 33.83 / 0.9491

(n1) 22.13 / 0.6739

(n2) 32.71 / 0.9391

Groundtruth

/

Figure 12. (a1)-(n1) The input rainy images with 14 kinds of different rain streak orientations and magnitudes from Rain1400. (a2)-(n2)
The corresponding derained results of the RCDNet. The 14 inputs share the same groundtruth as displayed in the first column. PSNR/SSIM
are listed below the corresponding images for easy reference. The images are better observed by zooming in on screen.

text), and visualize the learned rain kernels, so as to fully
verify the mechanism of the proposed RCDNet.

For the three datasets, including Rain100H with 5 types
of rain streaks, Rain1400 with 14 kinds of ones, and SPA-
Data, we correspondingly select several rainy images with
representative rain patterns as shown in Fig. 11, Fig. 12,
and Fig. 13, respectively. From the visual and quantita-
tive demonstration, we can easily observe that even for such
complex rain patterns, RCDNet always attains excellent de-
raining performance. This substantiates the good flexibility
and generality of our method. Besides, the corresponding
rain kernels for these datasets extracted by our methods are
shown in Fig. 14. Clearly, it is observed that the shapes of

rain kernels are different among the three datasets, and the
rain kernels learned from Rain1400 and SPA-Data are more
diverse than that learned from Rain100H. This fits perfect-
ly with the diversity of these datasets. It confirms that our
method is indeed capable of automatically learning diverse
rain kernels that are potentially useful for the related tasks
on rainy images.
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