
Attentive Normalization for Conditional Image Generation
Supplementary Material

Figure 1. Default residual block used in the class-conditional im-
age generation.

Figure 2. Residual block using attentive normalization.

1. Implementation of Attentive Normalization
Attentive normalization consists of the semantic lay-

out learning module and subsequent regional normaliza-
tion. The semantic layout learning module includes self-
sampling regularization, similar to that of self-attention [5]
except that we need an additional convolutional layer (with
n filters) to simulate the semantic entities and avoid comput-
ing pair-wise relationship between every two feature points
from the input. The implementation of regional normaliza-
tion is given in Algorithm. 1.

2. Network Architectures
Class-conditional Image Generation Our used GAN
framework is based on [3, 5] and we incorporate our de-
signed attentive normalization (AN) onto it. Both the gen-
erator and discriminator mainly contain the residual blocks
[2]. Construction of a standard residual block in this task is
given in Figure 1, and the custom residual block with our
AN is designed as Figure 2. The detailed structure of the
used GAN model is given as follows.

Generator: z → FC (4 × 4 × 1024) → ResBlock up
1024 → ResBlock up 512 → ResBlock up 256 (AN) →
ResBlock up 128 → ResBlock up 64 → BN → ReLU →
Conv3× 3→ Tanh

Discriminator: x → ResBlock down 64 → Res-

Block down 128 (AN) → ResBlock down 256 →
concat(Embed(y), h)→ ResBlock down 512→ ResBlock
down 1024→ ReLU→ Global sum pooling→ FC→ 1

Generative Image Inpainting The two-stage inpainting
framework is from [4]. It has two stacked encoder-decoder
network structures. The second one is equipped with an
extra branch, which has attentive normalization for context
modeling. The generator design is illustrated in Figure 3.
Suppose the input image is X and the prediction of the gen-
erator is X̂. The specification of the generator is given as

X→ Encoder→ Bottleneck→ Decoder1→ X̃,
concat(X̃, X)→ Encoder→ Attentive branch→ X̃a

f ,
concat(X̃, X) → Encoder → Bottleneck → X̃b

f ,
concat(X̃a

f , X̃b
f )→ Decoder2→ X̂,

where X̃ is the coarse prediction of the first stage from the
generator.

The design of the used components is given as
Encoder: Conv(5, 32, 1, 1)→ ELU→ Conv(3, 64, 2, 1)→
ELU→ Conv(3, 64, 1, 1)→ ELU→ Conv(3, 128, 2, 1)→
ELU→ Conv(3, 128, 1, 1)→ ELU,
Bottleneck: Conv(3, 128, 1, 2)→ ELU→ Conv(3, 128, 1,
4)→ ELU→ Conv(3, 128, 1, 8)→ ELU→ Conv(3, 128,
1, 16)→ ELU,
Decoder1: ×2 → Conv(3, 64, 1, 1) → ELU → Conv(3,
64, 1, 1) → ELU → ×2 → Conv(3, 32, 1, 1) → ELU →
Conv(3, 16, 1, 1)→ ELU→ Conv(3, 3, 1, 1)→ Clip to [-1,
1],
Decoder2: Conv(3, 128, 1, 1) → ELU → Conv(3, 128, 1,
1)→ ELU→ Decoder1,
Attentive branch: Conv(3, 128, 1, 1) → AN → Conv(3,
128, 1, 1)→ ELU→ Conv(3, 128, 1, 1)→ ELU,
where Conv(k, c, s, d) denotes a convolution layer, ELU de-
notes exponential linear unit [1] and ×2 denotes a nearest-
neighbor upsampling operator (with scaling factor 2). k, c,
s, and d denote kernel size, filter number, stride size, and
dilation rate, respectively.

The used discriminators are the same as those in [4] for
global and local operations.

1



Algorithm 1 Pseudo code of regional normalization (Tensorflow style)
Input: Input feature maps X ∈ Rb×h×w×c and the learned soft semantic layout S ∈ Rb×h×w×n, and learnable parameter

vectors β and α ∈ R1×1×1×c×1.
Output: The normalized feature mapsX̄ ∈ Rb×h×w×c.

1: S = tf.expand dims(S,−2) # shape: b× h× w × 1× n
2: c = tf.reduce sum(S, axis = [1, 2], keepdims = True) + ε
3: X = tf.expand dims(X,−1) # shape: b× h× w × c× 1
4: Xactivated = X ∗ S # shape: b× h× w × c× n
5: Xmean = tf.reduce sum(Xactivated, axis = [1, 2], keepdims = True)/c
6: Xstd = tf.sqrt(tf.reduce sum((Xactivated −Xmean) ∗ ∗2, axis = [1, 2], keepdims = True)/c)
7: X = (X−Xmean)/(Xstd + ε) ∗ β + α
8: X̄ = tf.reduce sum(X ∗ S, axis = −1)

E DBottleneck

E

D
Bottleneck

E

Attentive 
normalization Convolution Concatenation Forward flow

Figure 3. Employed generator equipped with the proposed attentive normalization for generative image inpainting.

3. More Experimental Results and Analysis

3.1. Ablation Studies

Attention Maps Activated By the Learned Semantic En-
tities The illustration is given in Figure 4. These entities
correspond to different regions with their respective seman-
tics. Using only 4-5 semantic entities in generation from
Figure 4 is with the following reasons.

1) These figures are the binarized versions for visualiza-
tion of the learned soft semantic layout (Eq. (4)). Only the
maximal activation among all semantic entities is reserved
as 1 and all others are clipped to 0.

2) Analogous to data clustering, there exist similar se-
mantic entities in the feature space where its distribution
density is high and n (like a clustering number) is relatively
large. Increasing n from 8 to 16 may not produce semantic
entities with more salient patterns. But it can better fit the
feature distribution with larger model capacity, leading to
performance improvement.

Effectiveness of Self-sampling Regularization (SSR)
As analyzed in the paper, our proposed method fails to cap-
ture multiple semantics without SSR since most semantic
entities tend to become useless in training. Besides quanti-
tative evaluation in the ablation studies of the paper, more

visualization results are provided in Figure 5 for reference.
Note these binarized semantic layouts (Figure 5(b)) are in
color. The feature points are activated by one semantic en-
tity in all examples (Figure 5(h)).

3.2. Class-conditional Image Generation

More randomly generated images from our method on
ImageNet are given in Figures 6, 7, and 8. And more cate-
gorical interpolation examples are shown in Figure 9.

3.3. Generative Image Inpainting

More visual evaluation is presented in Figure 10.

3.4. Limitations

Since the relation between the feature points is computed
by their similarities with the learned semantic entities in-
stead of formed in a pair-wise fashion, it is possible that
some features are not normalized when they are not similar
to the given entities accordingly.

The only supervision for learning the semantic layout
comes from the gradients of the discriminator for the class-
conditional image generation, or the gradients of recon-
structing images and the critics of the discriminator for the
generative inpainting. Though these learned semantic en-
tities are correlated with the high-level understanding, it is



(a) (b) (c) (d) (e) (f) (g) (h)
Figure 4. More visualization examples of the learned semantic layout on ImageNet. (a) The class-conditional generation results from our
method. (b) The binarized version of the learned semantic layout. (c-h) The attention maps activated by the learned semantic entities. The
brighter the activated regions are, the higher correlation they are with the used semantic entity. The resolution of the input feature maps is
32× 32.

(a) (b) (c) (d) (e) (f) (g) (h)
Figure 5. Visualizations of the learned semantic layout without self-sampling regularization on ImageNet. (a) The class-conditional gener-
ation results from our method. (b) The binarized version of the learned semantic layout. (c-h) The attention maps activated by the learned
semantic entities. The brighter the activated regions are, the higher correlation they are with the used semantic entity. The resolution of the
input feature maps is 32× 32.



Blenheim spaniel (156) Persian cat (283)

Monarch butterfly (323) Starfish (327)
Figure 6. Randomly generated images (128× 128) by our model on ImageNet.

still hard to interpret their exact meaning.

References
[1] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochre-

iter. Fast and accurate deep network learning by exponential
linear units (elus). arXiv preprint arXiv:1511.07289, 2015. 1

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR, pages
770–778, 2016. 1

[3] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and
Yuichi Yoshida. Spectral normalization for generative adver-
sarial networks. arXiv preprint arXiv:1802.05957, 2018. 1

[4] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and
Thomas S Huang. Generative image inpainting with contex-
tual attention. arXiv preprint arXiv:1801.07892, 2018. 1, 8

[5] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus
Odena. Self-attention generative adversarial networks. arXiv
preprint arXiv:1805.08318, 2018. 1



Aircraft carrier (403) Drilling platform (540)

Schooner (780) Alp (970)
Figure 7. Randomly generated images (128× 128) by our model on ImageNet.



Promontory (976) Agaric (992)

Espresso (967) Daisy (985)
Figure 8. Randomly generated images (128× 128) by our model on ImageNet.



Figure 9. The categorical interpolation and intermediate results by our method. The results in each row are generated from a individual
fixed noisy signal z.



(a) (b) (c) (a) (b) (c)
Figure 10. Visual comparisons on generative image inpainting on Paris street view. (a) Input image. (b) CA [4]. (c) Our results.


