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Method CNNs | #.Param. | GFLOPs | Top-1 | Top-5
ResNet 11.148M 1.699 7040 | 89.45
SENet [2] R-18 11.231M 1.700 70.59 | 89.78
CBAM [3] 11.234M 1.700 70.73 | 89.91
ECA-Net (Ours) 11.148M 1.700 70.78 | 89.92
ResNet 20.788M 3.427 7331 | 91.40
SENet [2] R34 20.938M 3.428 73.87 | 91.65
CBAM [3] 20.943M 3.428 74.01 | 91.76
ECA-Net (Ours) 20.788M 3.428 74.21 | 91.83

Table A. Comparison of different methods using ResNet-18 (R-18)
and ResNet-34 (R-34) on ImageNet in terms of network parame-
ters (#.Param.), floating point operations per second (FLOPs), and
Top-1/Top-5 accuracy (in %).

A. Comparison of Different Methods using
ResNet-18 and ResNet-34 on ImageNet

Here, we compare different attention methods using
ResNet-18 and ResNet-34 on ImageNet. The results are
listed in Table [A] where the results of ResNet, SENet and
CBAM are duplicated from [3]], and we train ECA-Net us-
ing the settings of hyper-parameters with [3]. From Table[A]
we can see that our ECA-Net improves the original ResNet-
18 and ResNet-34 over 0.38% abd 0.9% in Top-1 accuracy,
respectively. Comparing with SENet and CBAM, our ECA-
Net achieves better performance using less model complex-
ity, showing the effectiveness of the proposed ECA module.

B. Stacking More 1D Convolutions in ECA
Module

Intuitively, more 1D convolutions stacked in ECA mod-
ule may bring further improvement, due to increase of mod-
eling capability. Actually, we found that one extra 1D con-
volution brings trivial gains (~0.1%) at the cost of slightly
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Figure A. Example images of four random sampled classes on Im-
ageNet, including hammerhead shark, ambulance, medicine chest
and butternut squash.

increasing complexity, but more 1D convolutions degrade
performance, which may be caused by that more 1D con-
volutions make gradient backpropagation more difficult.
Therefore, our final ECA module contains only one 1D con-
volution.

C. Visualization of Weights Learned by ECA
Modules and SE Blocks

To further analyze the effect of our ECA module on
learning channel attention, we visualize the weights learned
by ECA modules and compare with SE blocks. Here,
we employ ResNet-50 as backbone model, and illus-
trate weights of different convolution blocks. Specifically,
we randomly sample four classes from ImageNet dataset,
which are hammerhead shark, ambulance, medicine chest
and butternut squash, respectively. Some example images
are illustrated in Figure [A] After training the networks, for
all images of each class collected from validation set of
ImageNet, we compute the channel weights of convolution
blocks on average. Figure [B] visualizes the channel weights
of conv_i_j, which indicates j-th convolution block in i-
th stage. Besides the visualization results of four random
sampled classes, we also give the distribution of the aver-
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Figure B. Visualization the channel weights of conv_i_j, where ¢ indicate ¢-th stage and j is j-th convolution block in ¢-th stage. The
channel weights learned by ECA modules and SE blocks are illustrated in bottom and top of each row, respectively. Better view with

zooming in.



age weights across 1K classes as reference. The channel
weights learned by ECA modules and SE blocks are illus-
trated in bottom and top of each row, respectively.

From Figure B[ we have the following observations.
Firstly, for both ECA modules and SE blocks, the distri-
butions of channel weights for different classes are very
similar at the earlier layers (i.e., ones from conv_2_1 to
conv_3_4), which may be by reason of that the earlier layers
aim at capturing the basic elements (e.g., boundaries and
corners) [4]. These features are almost similar for different
classes. Such phenomenon also was described in the ex-
tended version of [2ﬂ Secondly, for the channel weights of
different classes learned by SE blocks, most of them tend
to be the same (i.e., 0.5) in conv_4_2 ~ conv_4_5 while the
differences among various classes are not obvious. On the
contrary, the weights learned by ECA modules are clearly
different across various channels and classes. Since convo-
lution blocks in 4-th stage prefer to learn semantic infor-
mation, so the weights learned by ECA modules can better
distinguish different classes. Finally, convolution blocks in
the final stage (i.e., conv_5_1, conv_5_2 and conv_5_3) cap-
ture high-level semantic features and they are more class-
specific. Obviously, the weights learned by ECA modules
are more class-specific than ones learned by SE blocks.
Above results clearly demonstrate that the weights learned
by our ECA modules have better discriminative ability.
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