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In this supplemental material, we give further implemen-
tation details of the different types of refinement networks
and provide results for a more comprehensive comparison
on optical flow benchmarks. Moreover, we present an anal-
ysis considering the PPAC improvements on unreliable pix-
els as well as additional visualizations of PPAC-refined op-
tical flow fields and segmentation maps.

A. Additional Implementation Details
A.l. Learning procedure

To train our networks, we use the Adam optimizer [36]
with default parameters 1 = 0.9, 82 = 0.999 and without
weight decay. PPAC refinement networks are trained with a
learning rate of 1 x 10~ for networks on Sintel and a learn-
ing rate of 5 x 107 on KITTI. For semantic segmentation
on Pascal VOC 2012, we use a learning rate of 1 x 107
for guidance and probability branches and 1 x 10~ for the
remaining PPAC parameters. The image inputs to all net-
works are normalized while estimates and log-probabilities
remain unchanged. For faster training of all refinement
networks, we save the outputs of the underlying backbone
networks (i.e. HD3 or DeepLabv3+), and only propagate
through the refinement step.

A.2. Network architectures

Tables[6]—[8] show the network structures used for PPAC,
PAC, and our baseline simple refinement network, respec-
tively. Here, ‘C’ represents standard convolution layers,
‘P’ layers with non-probabilistic PACs, and ‘PP’ layers with
our PPACs. The networks for optical flow and semantic seg-
mentation differ mainly by the number of input and output
channels (2 or 21, respectively). For optical flow, the guid-
ance branch uses only the first image as input since the flow
fields should be aligned w.r.t. the objects in this image. All
standard as well as PAC and PPAC-convolutions pad the in-
puts with zeros to preserve the feature size and use a stride
of one. Moreover, a bias term is learned for all types of
convolutions. The output of guidance and, if applicable,
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Table 6. Network structure of our PPAC networks for optical
flow/semantic segmentation with ~12.3k/14.3k parameters.

layer kernel non- shared

type size linearity ~ weights
guidance C:3—15 5X5 ReLU X
branch C:15—15 5x5 ReLU X
C:15—10 5x5 X X
probability C:5/21—5 5% d ReLU X
branch C:5—=5 5% d ReLU X
C:5—>2 5x 5  Sigmoid X
combination PP:2/21—2/21 T7x7 X 4
branch PP:2/21—2/21 Tx7 X v

Table 7. Network structure of our PAC baseline networks for opti-
cal flow/semantic segmentation with ~12.6k/15.5k parameters.

layer kernel non- shared

type size linearity ~ weights
guidance C:8/24—15/13 5x5  ReLU X
branch C:15/13—15/13 5x5 ReLU X
C:15/13—10 5x5 X X
combination P:2/21—2/21 T X v
branch P:2/21 —2/21 7T X v

Table 8. Network structure of our simple baseline network for
optical flow with a total of ~12.4k parameters.

layer kernel non- shared

type size linearity ~ weights
simple C:10—11 7x7 ReLU X
branch C:11—11 7x7 ReLU X
C:11—-2 Tx 7 X X

probability branches is split equally by the number of PAC
or PPACs such that individual guidance is used for the com-
ponents of the combination branch. For the simple setup,
we equally experimented with networks with two convolu-
tions and thus more channels but found the given one with
three convolutions to perform better.



Table 9. Average end-point error (AEE) of top-ranked two-frame
optical flow methods on Sintel train and test. *Re-evaluated for
comparability.

Table 12. Relative improvement of average end-point error (AEE),
evaluated on the 10% most unreliable and the remaining pixels of
our Sintel and KITTI test splits.

train test Sintel KITTI
clean final clean final clean final
VCN [67] (1.66) (2.24) 281 440 Most unreliable pixels 986% 893% 4.28%
IRR-PWC [26] (1.92)  (2.51) 384 458 Remaining pixels 411% 3.01% 942%
PWC-Net+ [64] (1.71) (2.34) 3.45 4.60
PPAC-HD?3 (ours) (1.54) (1.05) 459  4.60
HD3 [60] (1.68)" (L15)" 479 467 pleteness, we also include scene flow methods. Note, how-

Table 10. Average end-point error (AEE) and 3-pixel outlier rate
on non-occluded/all pixels (Out-Noc/all) of top-ranked optical
flow methods on KITTI 2012 train and test. Results in parentheses
indicate that data was used in training. TMethods use left and right
stereo images. *Re-evaluated for comparability.

train test

AEE AEE Out-Noc  Out-all
PPAC-HD?3 (ours) (0.71) 1.2 201% 509%
HD3 [60] (0.81)* 1.4 2.26% 541%
PRSM' [63] - 1.0 246% 4.23%
LiteFlowNet2 [62] - 1.4 2.63% 6.16 %
SPS-StFl1" [66] - 1.3 2.82% 5.61%

Table 11. Average end-point error (AEE), 3-pixel outlier rate on
all pixels (Out-all), and runtimes (time) of top-ranked methods on
KITTI 2015 train and test. Results in parentheses indicate that data
was used in training. "Methods use left and right stereo images.
*Re-evaluated for comparability.

train test
AEE Out-all QOut-all  time
UberATG-DRISF' [63] - - 473% 0.75s
PPAC-HD3 (ours) (120) (3.56%) 6.06% 0.19s
ISF [61]) - - 6.22% 600 s
VCN [67] (1.16) (41 %) 630% 0.18s
HD?3 [60] (1.40)* (439%)* 6.55%  0.11s*

B. Detailed Comparison on Optical Flow
Benchmarks

For completeness, we give a more detailed comparison
on benchmarks for optical flow, including the training re-
sults of PPAC-HD3 as well as the results of related work.

Table [9] shows results on Sintel clean and final. For
comparability, we re-evaluated the flow fields of HD3 on
the training splits, taking into account the available invalid
masks. Our proposed PPAC-HD3 ranks 4" w.r.t. to the AEE
on Sintel final.

Tables [IQ] and [[1] summarize results for the best-ranked
published methods on KITTI 2012 and 2015. For com-

ever, that such approaches are not fully comparable as they
leverage additional stereo images to compute flow. On both
datasets, PPAC-HD3 ranks 1% among optical flow methods
and 2" over all published approaches on KITTI 2015. As
we used the publically available checkpoint for HD3, which
differs slightly from the one used in [60], we report re-
evaluated results on the training sets. Moreover, we provide
HD3 runtimes evaluated on the same GTX 1080 Ti GPU as
PPAC-HD?3 for fair comparison.

C. Improvement of Unreliable Pixels

In the main paper, we argue that probabilistic pixel-
adaptive refinement allows to propagate correct estimates
into unreliable regions. Here, we examine the influence
of PPACs on unreliable pixels in more detail. We evalu-
ate the refinement of optical flow by computing the AEE
on the 10% most unreliable pixels of each flow field and
comparing it to the AEE of the remaining pixels. To assess
the reliability of a pixel estimate, we upsample the prob-
abilities of the last output scale and use nearest neighbor
interpolation if the estimated residuals fall outside the prob-
ability grid. We found these reliabilities to correlate better
with the optical flow errors than the ones obtained from the
composed full matching probability distribution proposed
in [60]. Moreover, we use the same PPAC refinement net-
works as trained for the experiments in Table [2]

Table [T2] shows the relative improvement on unreliable
and remaining pixels evaluated on our test splits of Sintel
and KITTI. On Sintel clean and final, we clearly observe a
more significant improvement on the unreliable pixels, jus-
tifying the conclusion that PPACs allow to replace pixels of
low reliability. In contrast, our evaluation on KITTI shows
a larger improvement for the remaining pixels. This cor-
relates well with the fact that we found the output proba-
bilities of [60] to be less well calibrated on KITTI, judging
by the comparatively larger benefit of oracle confidences,
c.f. Sec. [6.1} However, when comparing the relative im-
provements of PPACs to the ones obtained by PACs (8.87%
for more reliable and 2.72% for uncertain pixels), we ob-
serve that PPACs nevertheless allow for better handling of
unreliable regions even if the reliability estimates are not
completely accurate themselves.
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Figure 7. Examples of ground truth (fop), HD3 optical flow [60] (middle), and our PPAC-refined optical flow (bottom) on Sintel final. Best

viewed on screen.

Figure 8. Additional examples of cropped ground truth (top),
DeepLabv3+ [7] (middle), and PPAC-refined segmentation maps
(bottom) on Pascal VOC 2012. Best viewed on screen.

D. Additional Visualizations

Fig. [7 shows additional visualizations of refined optical
flow fields on our own validation and test splits of Sintel fi-
nal. As such, none of these flow fields was presented to the
PPAC refinement network during training. We clearly ob-
serve improved motion boundaries but also the ability of our
approach to correctly propagate estimates into erroneous re-
gions, e.g. the bird wings on the leftmost example.

In Fig. 8] we provide additional visualizations of refined
segmentation maps on Pascal VOC 2012. PPAC refinement
leads to a clear reduction of errors near object boundaries,
e.g. by considerably minimizing the segmentation margin
visible at the cat paw.
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