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In this supplemental material, we give further implemen-
tation details of the different types of refinement networks
and provide results for a more comprehensive comparison
on optical flow benchmarks. Moreover, we present an anal-
ysis considering the PPAC improvements on unreliable pix-
els as well as additional visualizations of PPAC-refined op-
tical flow fields and segmentation maps.

A. Additional Implementation Details
A.1. Learning procedure

To train our networks, we use the Adam optimizer [36]
with default parameters β1 = 0.9, β2 = 0.999 and without
weight decay. PPAC refinement networks are trained with a
learning rate of 1 × 10−3 for networks on Sintel and a learn-
ing rate of 5 × 10−3 on KITTI. For semantic segmentation
on Pascal VOC 2012, we use a learning rate of 1 × 10−4

for guidance and probability branches and 1 × 10−5 for the
remaining PPAC parameters. The image inputs to all net-
works are normalized while estimates and log-probabilities
remain unchanged. For faster training of all refinement
networks, we save the outputs of the underlying backbone
networks (i.e. HD3 or DeepLabv3+), and only propagate
through the refinement step.

A.2. Network architectures

Tables 6 – 8 show the network structures used for PPAC,
PAC, and our baseline simple refinement network, respec-
tively. Here, ‘C’ represents standard convolution layers,
‘P’ layers with non-probabilistic PACs, and ‘PP’ layers with
our PPACs. The networks for optical flow and semantic seg-
mentation differ mainly by the number of input and output
channels (2 or 21, respectively). For optical flow, the guid-
ance branch uses only the first image as input since the flow
fields should be aligned w.r.t. the objects in this image. All
standard as well as PAC and PPAC-convolutions pad the in-
puts with zeros to preserve the feature size and use a stride
of one. Moreover, a bias term is learned for all types of
convolutions. The output of guidance and, if applicable,
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Table 6. Network structure of our PPAC networks for optical
flow/semantic segmentation with ∼12.3k/14.3k parameters.

layer kernel non- shared
type size linearity weights

guidance C: 3→ 15 5× 5 ReLU 7

branch C: 15→ 15 5× 5 ReLU 7

C: 15→ 10 5× 5 7 7

probability C: 5/21→ 5 5× 5 ReLU 7

branch C: 5→ 5 5× 5 ReLU 7

C: 5→ 2 5× 5 Sigmoid 7

combination PP: 2/21→ 2/21 7× 7 7 3

branch PP: 2/21→ 2/21 7× 7 7 3

Table 7. Network structure of our PAC baseline networks for opti-
cal flow/semantic segmentation with ∼12.6k/15.5k parameters.

layer kernel non- shared
type size linearity weights

guidance C: 8/24→ 15/13 5× 5 ReLU 7

branch C: 15/13→ 15/13 5× 5 ReLU 7

C: 15/13→ 10 5× 5 7 7

combination P: 2/21→ 2/21 7× 7 7 3

branch P: 2/21→ 2/21 7× 7 7 3

Table 8. Network structure of our simple baseline network for
optical flow with a total of ∼12.4k parameters.

layer kernel non- shared
type size linearity weights

simple C: 10→ 11 7× 7 ReLU 7

branch C: 11→ 11 7× 7 ReLU 7

C: 11→ 2 7× 7 7 7

probability branches is split equally by the number of PAC
or PPACs such that individual guidance is used for the com-
ponents of the combination branch. For the simple setup,
we equally experimented with networks with two convolu-
tions and thus more channels but found the given one with
three convolutions to perform better.



Table 9. Average end-point error (AEE) of top-ranked two-frame
optical flow methods on Sintel train and test. ?Re-evaluated for
comparability.

train test

clean final clean final

VCN [67] (1.66) (2.24) 2.81 4.40
IRR-PWC [26] (1.92) (2.51) 3.84 4.58
PWC-Net+ [64] (1.71) (2.34) 3.45 4.60
PPAC-HD3 (ours) (1.54) (1.05) 4.59 4.60
HD3 [60] (1.68)? (1.15)? 4.79 4.67

Table 10. Average end-point error (AEE) and 3-pixel outlier rate
on non-occluded/all pixels (Out-Noc/all) of top-ranked optical
flow methods on KITTI 2012 train and test. Results in parentheses
indicate that data was used in training. †Methods use left and right
stereo images. ?Re-evaluated for comparability.

train test

AEE AEE Out-Noc Out-all

PPAC-HD3 (ours) (0.71) 1.2 2.01% 5.09%
HD3 [60] (0.81)? 1.4 2.26% 5.41%
PRSM† [65] – 1.0 2.46% 4.23%
LiteFlowNet2 [62] – 1.4 2.63% 6.16%
SPS-StFl† [66] – 1.3 2.82% 5.61%

Table 11. Average end-point error (AEE), 3-pixel outlier rate on
all pixels (Out-all), and runtimes (time) of top-ranked methods on
KITTI 2015 train and test. Results in parentheses indicate that data
was used in training. †Methods use left and right stereo images.
?Re-evaluated for comparability.

train test

AEE Out-all Out-all time

UberATG-DRISF† [63] – – 4.73% 0.75 s
PPAC-HD3 (ours) (1.20) (3.56%) 6.06% 0.19 s
ISF† [61] – – 6.22% 600 s
VCN [67] (1.16) (4.1 %) 6.30% 0.18 s
HD3 [60] (1.40)? (4.39%)? 6.55% 0.11 s?

B. Detailed Comparison on Optical Flow
Benchmarks

For completeness, we give a more detailed comparison
on benchmarks for optical flow, including the training re-
sults of PPAC-HD3 as well as the results of related work.

Table 9 shows results on Sintel clean and final. For
comparability, we re-evaluated the flow fields of HD3 on
the training splits, taking into account the available invalid
masks. Our proposed PPAC-HD3 ranks 4th w.r.t. to the AEE
on Sintel final.

Tables 10 and 11 summarize results for the best-ranked
published methods on KITTI 2012 and 2015. For com-

Table 12. Relative improvement of average end-point error (AEE),
evaluated on the 10% most unreliable and the remaining pixels of
our Sintel and KITTI test splits.

Sintel KITTI

clean final

Most unreliable pixels 9.86 % 8.93 % 4.28 %
Remaining pixels 4.11 % 3.01 % 9.42 %

pleteness, we also include scene flow methods. Note, how-
ever, that such approaches are not fully comparable as they
leverage additional stereo images to compute flow. On both
datasets, PPAC-HD3 ranks 1st among optical flow methods
and 2nd over all published approaches on KITTI 2015. As
we used the publically available checkpoint for HD3, which
differs slightly from the one used in [60], we report re-
evaluated results on the training sets. Moreover, we provide
HD3 runtimes evaluated on the same GTX 1080 Ti GPU as
PPAC-HD3 for fair comparison.

C. Improvement of Unreliable Pixels
In the main paper, we argue that probabilistic pixel-

adaptive refinement allows to propagate correct estimates
into unreliable regions. Here, we examine the influence
of PPACs on unreliable pixels in more detail. We evalu-
ate the refinement of optical flow by computing the AEE
on the 10% most unreliable pixels of each flow field and
comparing it to the AEE of the remaining pixels. To assess
the reliability of a pixel estimate, we upsample the prob-
abilities of the last output scale and use nearest neighbor
interpolation if the estimated residuals fall outside the prob-
ability grid. We found these reliabilities to correlate better
with the optical flow errors than the ones obtained from the
composed full matching probability distribution proposed
in [60]. Moreover, we use the same PPAC refinement net-
works as trained for the experiments in Table 2.

Table 12 shows the relative improvement on unreliable
and remaining pixels evaluated on our test splits of Sintel
and KITTI. On Sintel clean and final, we clearly observe a
more significant improvement on the unreliable pixels, jus-
tifying the conclusion that PPACs allow to replace pixels of
low reliability. In contrast, our evaluation on KITTI shows
a larger improvement for the remaining pixels. This cor-
relates well with the fact that we found the output proba-
bilities of [60] to be less well calibrated on KITTI, judging
by the comparatively larger benefit of oracle confidences,
c.f . Sec. 6.1. However, when comparing the relative im-
provements of PPACs to the ones obtained by PACs (8.87%
for more reliable and 2.72% for uncertain pixels), we ob-
serve that PPACs nevertheless allow for better handling of
unreliable regions even if the reliability estimates are not
completely accurate themselves.



Figure 7. Examples of ground truth (top), HD3 optical flow [60] (middle), and our PPAC-refined optical flow (bottom) on Sintel final. Best
viewed on screen.

Figure 8. Additional examples of cropped ground truth (top),
DeepLabv3+ [7] (middle), and PPAC-refined segmentation maps
(bottom) on Pascal VOC 2012. Best viewed on screen.

D. Additional Visualizations
Fig. 7 shows additional visualizations of refined optical

flow fields on our own validation and test splits of Sintel fi-
nal. As such, none of these flow fields was presented to the
PPAC refinement network during training. We clearly ob-
serve improved motion boundaries but also the ability of our
approach to correctly propagate estimates into erroneous re-
gions, e.g. the bird wings on the leftmost example.

In Fig. 8, we provide additional visualizations of refined
segmentation maps on Pascal VOC 2012. PPAC refinement
leads to a clear reduction of errors near object boundaries,
e.g. by considerably minimizing the segmentation margin
visible at the cat paw.
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